Matches in SemOpenAlex for { <https://semopenalex.org/work/W2320092903> ?p ?o ?g. }
- W2320092903 endingPage "457" @default.
- W2320092903 startingPage "446" @default.
- W2320092903 abstract "Ribosome profiling technology provides a means to precisely identify and quantitate sequences being translated in a given sample. Among parasites, ribosome profiling studies have been published for Trypanosoma brucei, Trypanosoma cruzi, and Plasmodium falciparum. Comparison of ribosome footprint read counts with mRNA abundance reveals the translation efficiency of individual genes, which varies between genes and across conditions. Switches between stages that have very different rates of protein production are common features of parasite life cycles. Details of stage-specific regulation of protein synthesis suggest important features of life cycles and transmission. While technologies for global enumeration of transcript abundance are well-developed, those that assess protein abundance require tailoring to penetrate to low-abundance proteins. Ribosome profiling circumvents this challenge by measuring global protein production via sequencing small mRNA fragments protected by the assembled ribosome. This powerful approach is now being applied to protozoan parasites including trypanosomes and Plasmodium. It has been used to identify new protein-coding sequences (CDSs) and clarify the boundaries of previously annotated CDSs in Trypanosoma brucei. Ribosome profiling has demonstrated that translation efficiencies vary widely between genes and, for trypanosomes at least, for the same gene across stages. The ribosomal proteins are themselves subjected to translational control, suggesting a means of reinforcing global translational regulation. While technologies for global enumeration of transcript abundance are well-developed, those that assess protein abundance require tailoring to penetrate to low-abundance proteins. Ribosome profiling circumvents this challenge by measuring global protein production via sequencing small mRNA fragments protected by the assembled ribosome. This powerful approach is now being applied to protozoan parasites including trypanosomes and Plasmodium. It has been used to identify new protein-coding sequences (CDSs) and clarify the boundaries of previously annotated CDSs in Trypanosoma brucei. Ribosome profiling has demonstrated that translation efficiencies vary widely between genes and, for trypanosomes at least, for the same gene across stages. The ribosomal proteins are themselves subjected to translational control, suggesting a means of reinforcing global translational regulation. this is the form that exists within the mammalian host, and here is restricted to the long slender forms, which are actively dividing. Unless noted, BFs are derived from infected mice. the in vitro cultured procyclic form of T. brucei. This form has been used in ribosome profiling experiments. the actively dividing form of T. brucei that resides in the tsetse fly midgut. the short regions of mRNA (∼28 nt) that assembled ribosomes protect from nuclease digestion. a technology that combines sequencing of fragments of mRNA protected by ribosomes and RNA-seq to quantitate protein production and translation efficiency globally. the common 39 nt sequence that is spliced onto all mRNAs in trypanosomatids, thereby forming the 5′-end of all mature mRNAs. the relative efficiency of translation of a specific mRNA in a given condition, defined here as the ratio between normalized ribosome footprint read counts and normalized mRNA read counts. an ORF whose start codon occurs before the start codon of the main coding sequence, but is on the same transcript." @default.
- W2320092903 created "2016-06-24" @default.
- W2320092903 creator A5043469393 @default.
- W2320092903 creator A5051357358 @default.
- W2320092903 date "2016-06-01" @default.
- W2320092903 modified "2023-09-24" @default.
- W2320092903 title "Illuminating Parasite Protein Production by Ribosome Profiling" @default.
- W2320092903 cites W1487331926 @default.
- W2320092903 cites W1519422934 @default.
- W2320092903 cites W1564316119 @default.
- W2320092903 cites W1784469360 @default.
- W2320092903 cites W1973340060 @default.
- W2320092903 cites W1980352348 @default.
- W2320092903 cites W1983696650 @default.
- W2320092903 cites W1984974246 @default.
- W2320092903 cites W1988001471 @default.
- W2320092903 cites W1991923259 @default.
- W2320092903 cites W1992308820 @default.
- W2320092903 cites W1994688203 @default.
- W2320092903 cites W1996518652 @default.
- W2320092903 cites W2004899695 @default.
- W2320092903 cites W2010005720 @default.
- W2320092903 cites W2013057225 @default.
- W2320092903 cites W2017557491 @default.
- W2320092903 cites W2019851585 @default.
- W2320092903 cites W2020663470 @default.
- W2320092903 cites W2029303106 @default.
- W2320092903 cites W2049477020 @default.
- W2320092903 cites W2054811909 @default.
- W2320092903 cites W2056242015 @default.
- W2320092903 cites W2057056314 @default.
- W2320092903 cites W2057850601 @default.
- W2320092903 cites W2059523662 @default.
- W2320092903 cites W2061659241 @default.
- W2320092903 cites W2063645626 @default.
- W2320092903 cites W2071849521 @default.
- W2320092903 cites W2072963865 @default.
- W2320092903 cites W2078346506 @default.
- W2320092903 cites W2078458710 @default.
- W2320092903 cites W2079517684 @default.
- W2320092903 cites W2083280521 @default.
- W2320092903 cites W2086157203 @default.
- W2320092903 cites W2095256515 @default.
- W2320092903 cites W2102904980 @default.
- W2320092903 cites W2105219600 @default.
- W2320092903 cites W2111565312 @default.
- W2320092903 cites W2112711937 @default.
- W2320092903 cites W2113224683 @default.
- W2320092903 cites W2123139638 @default.
- W2320092903 cites W2123210059 @default.
- W2320092903 cites W2126540162 @default.
- W2320092903 cites W2128551987 @default.
- W2320092903 cites W2132539457 @default.
- W2320092903 cites W2133040714 @default.
- W2320092903 cites W2134028524 @default.
- W2320092903 cites W2135467990 @default.
- W2320092903 cites W2141327598 @default.
- W2320092903 cites W2141529941 @default.
- W2320092903 cites W2144720570 @default.
- W2320092903 cites W2150046668 @default.
- W2320092903 cites W2150491437 @default.
- W2320092903 cites W2152456724 @default.
- W2320092903 cites W2152645648 @default.
- W2320092903 cites W2153369718 @default.
- W2320092903 cites W2154927069 @default.
- W2320092903 cites W2155159495 @default.
- W2320092903 cites W2156753244 @default.
- W2320092903 cites W2161167008 @default.
- W2320092903 cites W2161761672 @default.
- W2320092903 cites W2162999029 @default.
- W2320092903 cites W2164312318 @default.
- W2320092903 cites W2168799765 @default.
- W2320092903 cites W2169217573 @default.
- W2320092903 cites W2175136759 @default.
- W2320092903 cites W4239174137 @default.
- W2320092903 doi "https://doi.org/10.1016/j.pt.2016.03.005" @default.
- W2320092903 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4884476" @default.
- W2320092903 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27061497" @default.
- W2320092903 hasPublicationYear "2016" @default.
- W2320092903 type Work @default.
- W2320092903 sameAs 2320092903 @default.
- W2320092903 citedByCount "14" @default.
- W2320092903 countsByYear W23200929032017 @default.
- W2320092903 countsByYear W23200929032018 @default.
- W2320092903 countsByYear W23200929032019 @default.
- W2320092903 countsByYear W23200929032020 @default.
- W2320092903 countsByYear W23200929032021 @default.
- W2320092903 countsByYear W23200929032022 @default.
- W2320092903 crossrefType "journal-article" @default.
- W2320092903 hasAuthorship W2320092903A5043469393 @default.
- W2320092903 hasAuthorship W2320092903A5051357358 @default.
- W2320092903 hasBestOaLocation W23200929032 @default.
- W2320092903 hasConcept C104317684 @default.
- W2320092903 hasConcept C105580179 @default.
- W2320092903 hasConcept C182325514 @default.
- W2320092903 hasConcept C2779502636 @default.
- W2320092903 hasConcept C3675279 @default.
- W2320092903 hasConcept C38062823 @default.