Matches in SemOpenAlex for { <https://semopenalex.org/work/W2320622712> ?p ?o ?g. }
- W2320622712 endingPage "6937" @default.
- W2320622712 startingPage "6921" @default.
- W2320622712 abstract "The implementation of acid gas cosequestration requires investigation of the potential for acid gas leakage along existing wellbores at sequestration sites. In this study, the interaction between pozzolan-amended wellbore cement (35 vol % pozzolan/65 vol % cement, hereafter referred to as 35:65 sample) and acid gas (e.g., a mixture of CO2 and H2S) was simulated using the reactive transport code CrunchFlow. The model was applied to describe, interpret, and extrapolate scanning electron microscopy-backscattered electron (SEM-BSE) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) results on pozzolan-amended cement samples exposed to a 1 wt % NaCl solution saturated with an acid gas mixture of 21 mol % H2S and 79 mol % CO2 under the temperature of 50 °C and pressure of 150 bar. Simulation outputs included calcite volume percentage, total Ca and S weight percentages in the solid phase, porosity, and effective permeability from the surface to the interior of pozzolan-amended wellbore cement. The model reproduced the observed calcite zone formed in the brine-cement interface region of the sample after 2.5 days of exposure. The model also predicted that the calcite layer became dense (calcite vol % in the layer reached 55%) after 90 days of exposure, consistent with the experimental observation. C–S–H was the primary Ca2+ source to form the calcite layer, followed by C3S and Ca(OH)2. The main observed products of reaction between the 35:65 sample and H2S were pyrite and ettringite. Pyrite was primarily formed within 0.5 mm from the brine-cement interface; ettringite mainly formed within 1 mm from the interface. The model simulated these reactions that only the interface region (up to 2 mm distance from the surface) of the 35:65 sample became porous after 30 years of exposure. However, this narrow porous region could still serve as a migration pathway for acid gas, which was indicated by the increase in effective parallel permeability values determined from the simulation results. Those results show consistency with results of neat cement samples exposed under similar conditions. An increase in H2S content (in the range of 0 mol % to 40 mol %) results in more dissolution of Ca-bearing minerals in cement and more precipitation of calcite. Overall, this study indicates that an increase of porosity and permeability of pozzolan-amended wellbore cement at the cement interface with brine saturated with CO2 and H2S can cause significant changes in effective permeability of the cement." @default.
- W2320622712 created "2016-06-24" @default.
- W2320622712 creator A5015208463 @default.
- W2320622712 creator A5027475930 @default.
- W2320622712 creator A5074343661 @default.
- W2320622712 creator A5080783531 @default.
- W2320622712 creator A5087645217 @default.
- W2320622712 date "2013-11-13" @default.
- W2320622712 modified "2023-10-10" @default.
- W2320622712 title "Reactive Transport Modeling of Interactions between Acid Gas (CO<sub>2</sub> + H<sub>2</sub>S) and Pozzolan-Amended Wellbore Cement under Geologic Carbon Sequestration Conditions" @default.
- W2320622712 cites W1965560778 @default.
- W2320622712 cites W1968059710 @default.
- W2320622712 cites W1968803094 @default.
- W2320622712 cites W1973363636 @default.
- W2320622712 cites W1973858063 @default.
- W2320622712 cites W1973923221 @default.
- W2320622712 cites W1977125808 @default.
- W2320622712 cites W2003543397 @default.
- W2320622712 cites W2011288380 @default.
- W2320622712 cites W2012579131 @default.
- W2320622712 cites W2018621062 @default.
- W2320622712 cites W2021606505 @default.
- W2320622712 cites W2030947913 @default.
- W2320622712 cites W2034138038 @default.
- W2320622712 cites W2041278533 @default.
- W2320622712 cites W2041815033 @default.
- W2320622712 cites W2045020807 @default.
- W2320622712 cites W2049289497 @default.
- W2320622712 cites W2055191938 @default.
- W2320622712 cites W2058122954 @default.
- W2320622712 cites W2058585765 @default.
- W2320622712 cites W2062397938 @default.
- W2320622712 cites W2064572976 @default.
- W2320622712 cites W2068019146 @default.
- W2320622712 cites W2071166317 @default.
- W2320622712 cites W2072159113 @default.
- W2320622712 cites W2085192219 @default.
- W2320622712 cites W2104949894 @default.
- W2320622712 cites W2122174857 @default.
- W2320622712 cites W2131167240 @default.
- W2320622712 cites W2134432022 @default.
- W2320622712 cites W2136203181 @default.
- W2320622712 cites W2148324673 @default.
- W2320622712 cites W2152783510 @default.
- W2320622712 cites W2164808448 @default.
- W2320622712 cites W2170808003 @default.
- W2320622712 cites W2314058094 @default.
- W2320622712 cites W2328535874 @default.
- W2320622712 cites W2332794273 @default.
- W2320622712 cites W2333732274 @default.
- W2320622712 cites W3021680985 @default.
- W2320622712 cites W4239748937 @default.
- W2320622712 cites W763149439 @default.
- W2320622712 cites W1988518909 @default.
- W2320622712 doi "https://doi.org/10.1021/ef401749x" @default.
- W2320622712 hasPublicationYear "2013" @default.
- W2320622712 type Work @default.
- W2320622712 sameAs 2320622712 @default.
- W2320622712 citedByCount "37" @default.
- W2320622712 countsByYear W23206227122014 @default.
- W2320622712 countsByYear W23206227122015 @default.
- W2320622712 countsByYear W23206227122016 @default.
- W2320622712 countsByYear W23206227122017 @default.
- W2320622712 countsByYear W23206227122018 @default.
- W2320622712 countsByYear W23206227122019 @default.
- W2320622712 countsByYear W23206227122020 @default.
- W2320622712 countsByYear W23206227122021 @default.
- W2320622712 countsByYear W23206227122022 @default.
- W2320622712 countsByYear W23206227122023 @default.
- W2320622712 crossrefType "journal-article" @default.
- W2320622712 hasAuthorship W2320622712A5015208463 @default.
- W2320622712 hasAuthorship W2320622712A5027475930 @default.
- W2320622712 hasAuthorship W2320622712A5074343661 @default.
- W2320622712 hasAuthorship W2320622712A5080783531 @default.
- W2320622712 hasAuthorship W2320622712A5087645217 @default.
- W2320622712 hasConcept C127413603 @default.
- W2320622712 hasConcept C147789679 @default.
- W2320622712 hasConcept C159985019 @default.
- W2320622712 hasConcept C178790620 @default.
- W2320622712 hasConcept C185592680 @default.
- W2320622712 hasConcept C192562407 @default.
- W2320622712 hasConcept C199289684 @default.
- W2320622712 hasConcept C26771246 @default.
- W2320622712 hasConcept C2776052592 @default.
- W2320622712 hasConcept C2776062231 @default.
- W2320622712 hasConcept C2776957854 @default.
- W2320622712 hasConcept C2777858879 @default.
- W2320622712 hasConcept C2780021121 @default.
- W2320622712 hasConcept C2780191791 @default.
- W2320622712 hasConcept C42360764 @default.
- W2320622712 hasConcept C523993062 @default.
- W2320622712 hasConcept C6648577 @default.
- W2320622712 hasConcept C77835500 @default.
- W2320622712 hasConcept C98456152 @default.
- W2320622712 hasConceptScore W2320622712C127413603 @default.
- W2320622712 hasConceptScore W2320622712C147789679 @default.
- W2320622712 hasConceptScore W2320622712C159985019 @default.
- W2320622712 hasConceptScore W2320622712C178790620 @default.