Matches in SemOpenAlex for { <https://semopenalex.org/work/W2320877891> ?p ?o ?g. }
- W2320877891 endingPage "7733" @default.
- W2320877891 startingPage "7726" @default.
- W2320877891 abstract "Using raw GC/MS data as the X-block for chemometric modeling has the potential to provide better classification models for complex samples when compared to using the total ion current (TIC), extracted ion chromatograms/profiles (EIC/EIP), or integrated peak tables. However, the abundance of raw GC/MS data necessitates some form of data reduction/feature selection to remove the variables containing primarily noise from the data set. Several algorithms for feature selection exist; however, due to the extreme number of variables (10(6)-10(8) variables per chromatogram), the feature selection time can be prolonged and computationally expensive. Herein, we present a new prefilter for automated data reduction of GC/MS data prior to feature selection. This tool, termed unique ion filter (UIF), is a module that can be added after chromatographic alignment and prior to any subsequent feature selection algorithm. The UIF objectively reduces the number of irrelevant or redundant variables in raw GC/MS data, while preserving potentially relevant analytical information. In the m/z dimension, data are reduced from a full spectrum to a handful of unique ions for each chromatographic peak. In the time dimension, data are reduced to only a handful of scans around each peak apex. UIF was applied to a data set of GC/MS data for a variety of gasoline samples to be classified using partial least-squares discriminant analysis (PLS-DA) according to octane rating. It was also applied to a series of chromatograms from casework fire debris analysis to be classified on the basis of whether or not signatures of gasoline were detected. By reducing the overall population of candidate variables subjected to subsequent variable selection, the UIF reduced the total feature selection time for which a perfect classification of all validation data was achieved from 373 to 9 min (98% reduction in computing time). Additionally, the significant reduction in included variables resulted in a concomitant reduction in noise, improving overall model quality. A minimum of two um/z and scan window of three about the peak apex could provide enough information about each peak for the successful PLS-DA modeling of the data as 100% model prediction accuracy was achieved. It is also shown that the application of UIF does not alter the underlying chemical information in the data." @default.
- W2320877891 created "2016-06-24" @default.
- W2320877891 creator A5013063533 @default.
- W2320877891 creator A5079064222 @default.
- W2320877891 date "2014-07-14" @default.
- W2320877891 modified "2023-09-24" @default.
- W2320877891 title "Unique Ion Filter: A Data Reduction Tool for GC/MS Data Preprocessing Prior to Chemometric Analysis" @default.
- W2320877891 cites W1760798508 @default.
- W2320877891 cites W1918770099 @default.
- W2320877891 cites W1929543180 @default.
- W2320877891 cites W1964353466 @default.
- W2320877891 cites W1964602735 @default.
- W2320877891 cites W1972273299 @default.
- W2320877891 cites W1984200362 @default.
- W2320877891 cites W1992541609 @default.
- W2320877891 cites W1993232004 @default.
- W2320877891 cites W1993573509 @default.
- W2320877891 cites W1993976060 @default.
- W2320877891 cites W1998859085 @default.
- W2320877891 cites W2002507631 @default.
- W2320877891 cites W2005099000 @default.
- W2320877891 cites W2007913135 @default.
- W2320877891 cites W2018172536 @default.
- W2320877891 cites W2019574234 @default.
- W2320877891 cites W2032865993 @default.
- W2320877891 cites W2038552152 @default.
- W2320877891 cites W2040360808 @default.
- W2320877891 cites W2048517231 @default.
- W2320877891 cites W2050431484 @default.
- W2320877891 cites W2056107113 @default.
- W2320877891 cites W2057586200 @default.
- W2320877891 cites W2063143190 @default.
- W2320877891 cites W2074157398 @default.
- W2320877891 cites W2075878644 @default.
- W2320877891 cites W2076905584 @default.
- W2320877891 cites W2085946009 @default.
- W2320877891 cites W2088416838 @default.
- W2320877891 cites W2089310260 @default.
- W2320877891 cites W2093404056 @default.
- W2320877891 cites W2112772712 @default.
- W2320877891 cites W2132400238 @default.
- W2320877891 cites W2136589898 @default.
- W2320877891 cites W2140452226 @default.
- W2320877891 cites W2153615428 @default.
- W2320877891 cites W2160179547 @default.
- W2320877891 cites W2164431683 @default.
- W2320877891 cites W2332510908 @default.
- W2320877891 cites W4211107172 @default.
- W2320877891 cites W4211237772 @default.
- W2320877891 doi "https://doi.org/10.1021/ac501660a" @default.
- W2320877891 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25002039" @default.
- W2320877891 hasPublicationYear "2014" @default.
- W2320877891 type Work @default.
- W2320877891 sameAs 2320877891 @default.
- W2320877891 citedByCount "22" @default.
- W2320877891 countsByYear W23208778912015 @default.
- W2320877891 countsByYear W23208778912016 @default.
- W2320877891 countsByYear W23208778912017 @default.
- W2320877891 countsByYear W23208778912019 @default.
- W2320877891 countsByYear W23208778912020 @default.
- W2320877891 countsByYear W23208778912021 @default.
- W2320877891 countsByYear W23208778912022 @default.
- W2320877891 countsByYear W23208778912023 @default.
- W2320877891 crossrefType "journal-article" @default.
- W2320877891 hasAuthorship W2320877891A5013063533 @default.
- W2320877891 hasAuthorship W2320877891A5079064222 @default.
- W2320877891 hasBestOaLocation W23208778911 @default.
- W2320877891 hasConcept C10551718 @default.
- W2320877891 hasConcept C105795698 @default.
- W2320877891 hasConcept C106131492 @default.
- W2320877891 hasConcept C111335779 @default.
- W2320877891 hasConcept C124101348 @default.
- W2320877891 hasConcept C132964779 @default.
- W2320877891 hasConcept C148483581 @default.
- W2320877891 hasConcept C151304367 @default.
- W2320877891 hasConcept C153180895 @default.
- W2320877891 hasConcept C153914771 @default.
- W2320877891 hasConcept C154945302 @default.
- W2320877891 hasConcept C185592680 @default.
- W2320877891 hasConcept C2524010 @default.
- W2320877891 hasConcept C31972630 @default.
- W2320877891 hasConcept C33923547 @default.
- W2320877891 hasConcept C41008148 @default.
- W2320877891 hasConcept C43617362 @default.
- W2320877891 hasConcept C58489278 @default.
- W2320877891 hasConcept C69738355 @default.
- W2320877891 hasConcept C70518039 @default.
- W2320877891 hasConceptScore W2320877891C10551718 @default.
- W2320877891 hasConceptScore W2320877891C105795698 @default.
- W2320877891 hasConceptScore W2320877891C106131492 @default.
- W2320877891 hasConceptScore W2320877891C111335779 @default.
- W2320877891 hasConceptScore W2320877891C124101348 @default.
- W2320877891 hasConceptScore W2320877891C132964779 @default.
- W2320877891 hasConceptScore W2320877891C148483581 @default.
- W2320877891 hasConceptScore W2320877891C151304367 @default.
- W2320877891 hasConceptScore W2320877891C153180895 @default.
- W2320877891 hasConceptScore W2320877891C153914771 @default.
- W2320877891 hasConceptScore W2320877891C154945302 @default.