Matches in SemOpenAlex for { <https://semopenalex.org/work/W2321032610> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2321032610 endingPage "770" @default.
- W2321032610 startingPage "769" @default.
- W2321032610 abstract "To the Editors: In questionnaires applied in epidemiologic surveys, respondents often answer questions about continuous variables in terms of few predefined categories. Examples of such continuous variables commonly treated as categorized (grouped) data are yearly household income, frequency of food intake during 1 week, and hours of intensive physical activity per week. The reproducibility of grouped data is usually estimated by the intraclass correlation coefficient (ICC),1 calculated on the midpoints of predefined categories, or weighted kappa.2 Both methods, however, depend on the choice of categories (cut-off points, number) and seem to underestimate continuous data ICC.3–5 This behavior complicates their interpretation and hinders comparison of questionnaires with differently defined categories. To our knowledge, the maximum likelihood ICC has not been suggested in reproducibility studies with grouped data. We compare it with the midpoint ICC on simulated datasets and on a real-life example, food frequency questionnaire (FFQ) data. Our simulations mimicked situations when 1000 respondents answer the question with 5 predefined categories on 2 occasions. We performed 1000 simulations for each of the 99 ICC values (0.01–0.99). To investigate the influence of the number of categories, we further experimented with 3, 5, 10, 25, and 50 categories. These experiments included 1 low (0.2), 1 medium (0.5), and 1 high (0.8) ICC value (1000 simulations for each experiment). We separately analyzed cases of equal and unequal category widths. Data were simulated according to 1-way random-effects model and grouped into predefined categories afterwards. Detailed methodology of simulations and derivation of the log-likelihood for grouped data are in the eAppendix (https://links.lww.com/EDE/A807). The maximum likelihood estimator showed low bias, with a median value of 0.001 (range 0.000–0.011) when categories widths were equal, and 0.002 (0.000–0.017) when categories widths were unequal (simulations with 1000 respondents and 5 categories; eTable1, eFigure1, https://links.lww.com/EDE/A807). In contrast, midpoint ICC underestimated ICC by a median value of 0.067 (0.002–0.111) when categories widths were equal and 0.133 (0.002–0.182) otherwise. The Figure shows the results of simulations with different number of categories (as described in eTables 2–4, https://links.lww.com/EDE/A807). Maximum likelihood ICC was unaffected by the number of categories and the choice of cut-off points: its mean estimates for data with the same underlying ICC value differed by 0.005, at most. In comparison, midpoint estimates for data with the same ICC value differed by up to 0.24. The midpoint method underestimated ICC more when the number of categories was lower. Furthermore, its bias was higher when ICC was higher and widths of categories unequal. Its bias was low, mainly below 0.01, only when the number of categories was large (25 and higher).FIGURE: Impact of number of categories on estimators. For each of the 3 ICC values and a fixed number of categories, plot shows means of ICCMID and ICCMLE over 1000 simulations with equal category widths and 1000 simulations with unequal category widths. True ICC value is shown as a horizontal line at values of 0.2, 0.5, and 0.8. ICC, intraclass correlation coefficient; ICCMID, ICC calculated on categories’ midpoints; ICCMLE, maximum likelihood estimator.The FFQ example showed a similar pattern, with maximum-likelihood estimates on average higher by 0.09 than midpoint estimates (eTable5, https://links.lww.com/EDE/A807). Although the bias and dependence of midpoint ICC on the number of categories have been noted previously, maximum likelihood estimation has not been used in reproducibility studies with grouped data, probably because of lack of user-friendly software solutions. Thus, we provide R package iRepro (available from http://www.imi.hr/~jkovacic/irepro.html, including installation and usage guidelines). To conclude, researchers should be aware of bias related to the commonly used midpoint approach when estimating ICC from continuous grouped data. The maximum likelihood estimator is a better choice, as it showed almost no bias under all tested conditions. Furthermore, it was unaffected by the choice of categories. This enables comparison of questionnaires with different grouping schemes, including questionnaires with data that are not grouped (ie, continuous data). Unless the number of categories is large, such comparisons based on the midpoint method should be avoided. ACKNOWLEDGMENT We thank Jelena Macan for her valuable comments. Jelena Kovačić Veda Marija Varnai Institute for Medical Research and Occupational Health Zagreb, Croatia [email protected]" @default.
- W2321032610 created "2016-06-24" @default.
- W2321032610 creator A5043811603 @default.
- W2321032610 creator A5060401612 @default.
- W2321032610 date "2014-09-01" @default.
- W2321032610 modified "2023-09-27" @default.
- W2321032610 title "Intraclass Correlation Coefficient for Grouped Data" @default.
- W2321032610 cites W2003123824 @default.
- W2321032610 cites W2024201314 @default.
- W2321032610 cites W2037789405 @default.
- W2321032610 cites W2056400350 @default.
- W2321032610 cites W2141403362 @default.
- W2321032610 doi "https://doi.org/10.1097/ede.0000000000000139" @default.
- W2321032610 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25076151" @default.
- W2321032610 hasPublicationYear "2014" @default.
- W2321032610 type Work @default.
- W2321032610 sameAs 2321032610 @default.
- W2321032610 citedByCount "5" @default.
- W2321032610 countsByYear W23210326102018 @default.
- W2321032610 countsByYear W23210326102021 @default.
- W2321032610 countsByYear W23210326102022 @default.
- W2321032610 countsByYear W23210326102023 @default.
- W2321032610 crossrefType "journal-article" @default.
- W2321032610 hasAuthorship W2321032610A5043811603 @default.
- W2321032610 hasAuthorship W2321032610A5060401612 @default.
- W2321032610 hasBestOaLocation W23210326101 @default.
- W2321032610 hasConcept C104709138 @default.
- W2321032610 hasConcept C105795698 @default.
- W2321032610 hasConcept C117220453 @default.
- W2321032610 hasConcept C149782125 @default.
- W2321032610 hasConcept C163864269 @default.
- W2321032610 hasConcept C2524010 @default.
- W2321032610 hasConcept C2778724333 @default.
- W2321032610 hasConcept C2780092901 @default.
- W2321032610 hasConcept C2983394010 @default.
- W2321032610 hasConcept C33923547 @default.
- W2321032610 hasConcept C34130140 @default.
- W2321032610 hasConcept C71924100 @default.
- W2321032610 hasConcept C9893847 @default.
- W2321032610 hasConceptScore W2321032610C104709138 @default.
- W2321032610 hasConceptScore W2321032610C105795698 @default.
- W2321032610 hasConceptScore W2321032610C117220453 @default.
- W2321032610 hasConceptScore W2321032610C149782125 @default.
- W2321032610 hasConceptScore W2321032610C163864269 @default.
- W2321032610 hasConceptScore W2321032610C2524010 @default.
- W2321032610 hasConceptScore W2321032610C2778724333 @default.
- W2321032610 hasConceptScore W2321032610C2780092901 @default.
- W2321032610 hasConceptScore W2321032610C2983394010 @default.
- W2321032610 hasConceptScore W2321032610C33923547 @default.
- W2321032610 hasConceptScore W2321032610C34130140 @default.
- W2321032610 hasConceptScore W2321032610C71924100 @default.
- W2321032610 hasConceptScore W2321032610C9893847 @default.
- W2321032610 hasIssue "5" @default.
- W2321032610 hasLocation W23210326101 @default.
- W2321032610 hasLocation W23210326102 @default.
- W2321032610 hasLocation W23210326103 @default.
- W2321032610 hasOpenAccess W2321032610 @default.
- W2321032610 hasPrimaryLocation W23210326101 @default.
- W2321032610 hasRelatedWork W1801130225 @default.
- W2321032610 hasRelatedWork W2016661444 @default.
- W2321032610 hasRelatedWork W2027196397 @default.
- W2321032610 hasRelatedWork W2039496111 @default.
- W2321032610 hasRelatedWork W2073073724 @default.
- W2321032610 hasRelatedWork W2083683653 @default.
- W2321032610 hasRelatedWork W2124120188 @default.
- W2321032610 hasRelatedWork W3000026015 @default.
- W2321032610 hasRelatedWork W3159595972 @default.
- W2321032610 hasRelatedWork W4386252625 @default.
- W2321032610 hasVolume "25" @default.
- W2321032610 isParatext "false" @default.
- W2321032610 isRetracted "false" @default.
- W2321032610 magId "2321032610" @default.
- W2321032610 workType "article" @default.