Matches in SemOpenAlex for { <https://semopenalex.org/work/W2321043670> ?p ?o ?g. }
- W2321043670 endingPage "56" @default.
- W2321043670 startingPage "548" @default.
- W2321043670 abstract "Molecular simulations have had a transformative impact on chemists' understanding of the structure and dynamics of molecular systems. Simulations can both explain and predict chemical phenomena, and they provide a unique bridge between the microscopic and macroscopic regimes. The input for such simulations is the intermolecular interactions, which then determine the forces on the constituent atoms and therefore the time evolution and equilibrium properties of the system. However, in practice, accuracy and reliability are often limited by the fidelity of the description of those very same interactions, most typically embodied approximately in mathematical form in what are known as force fields. Force fields most often utilize conceptually simple functional forms that have been parametrized to reproduce existing experimental gas phase or bulk data. Yet, reliance on empirical parametrization can sometimes introduce limitations with respect to novel chemical systems or uncontrolled errors when moving to temperatures, pressures, or environments that differ from those for which they were developed. Alternatively, it is possible to develop force fields entirely from first principles, using accurate electronic structure calculations to determine the intermolecular interactions. This introduces a new set of challenges, including the transferability of the resulting force field to related chemical systems. In response, we recently developed an alternative approach to develop force fields entirely from first-principles electronic structure calculations based on intermolecular perturbation theory. Making use of an energy decomposition analysis ensures, by construction, that the resulting force fields contain the correct balance of the various components of intermolecular interaction (exchange repulsion, electrostatics, induction, and dispersion), each treated by a functional form that reflects the underlying physics. We therefore refer to the resulting force fields as physically motivated. We find that these physically motivated force fields exhibit both high accuracy and transferability, with the latter deriving from the universality of the fundamental physical laws governing intermolecular interactions. This basic methodology has been applied to a diverse set of systems, ranging from simple liquids to nanoporous metal-organic framework materials. A key conclusion is that, in many cases, it is feasible to account for nearly all of the relevant physics of intermolecular interactions within the context of the force field. In such cases, the structural, thermodynamic, and dynamic properties of the system become naturally emergent, even in the absence of explicit parameterization to bulk properties. We also find that, quite generally, the three-body contributions to the dispersion and exchange energies in bulk liquids are crucial for quantitative accuracy in a first-principles force field, although these contributions are almost universally neglected in existing empirical force fields." @default.
- W2321043670 created "2016-06-24" @default.
- W2321043670 creator A5004903882 @default.
- W2321043670 creator A5039306865 @default.
- W2321043670 creator A5088916558 @default.
- W2321043670 date "2015-03-17" @default.
- W2321043670 modified "2023-09-24" @default.
- W2321043670 title "Transferable next-generation force fields from simple liquids to complex materials." @default.
- W2321043670 cites W1967144798 @default.
- W2321043670 cites W1970199867 @default.
- W2321043670 cites W1972296430 @default.
- W2321043670 cites W1975845692 @default.
- W2321043670 cites W1981049088 @default.
- W2321043670 cites W1986982278 @default.
- W2321043670 cites W1993397673 @default.
- W2321043670 cites W1995176305 @default.
- W2321043670 cites W2001187016 @default.
- W2321043670 cites W2014464559 @default.
- W2321043670 cites W2021969858 @default.
- W2321043670 cites W2027743899 @default.
- W2321043670 cites W2038896218 @default.
- W2321043670 cites W2039273905 @default.
- W2321043670 cites W2049692419 @default.
- W2321043670 cites W2050890227 @default.
- W2321043670 cites W2051381895 @default.
- W2321043670 cites W2051508284 @default.
- W2321043670 cites W2053557914 @default.
- W2321043670 cites W2054556368 @default.
- W2321043670 cites W2057910943 @default.
- W2321043670 cites W2065015849 @default.
- W2321043670 cites W2085822586 @default.
- W2321043670 cites W2090925878 @default.
- W2321043670 cites W2098366232 @default.
- W2321043670 cites W2100716186 @default.
- W2321043670 cites W2101746269 @default.
- W2321043670 cites W2138085558 @default.
- W2321043670 cites W2146227254 @default.
- W2321043670 cites W2156454985 @default.
- W2321043670 cites W2157108268 @default.
- W2321043670 cites W2164043498 @default.
- W2321043670 cites W2318069809 @default.
- W2321043670 cites W2320057048 @default.
- W2321043670 cites W2321741763 @default.
- W2321043670 cites W2322288271 @default.
- W2321043670 cites W2323537547 @default.
- W2321043670 cites W2325103942 @default.
- W2321043670 cites W2328721235 @default.
- W2321043670 cites W3098280297 @default.
- W2321043670 doi "https://doi.org/10.1021/ar500272n" @default.
- W2321043670 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25688596" @default.
- W2321043670 hasPublicationYear "2015" @default.
- W2321043670 type Work @default.
- W2321043670 sameAs 2321043670 @default.
- W2321043670 citedByCount "66" @default.
- W2321043670 countsByYear W23210436702015 @default.
- W2321043670 countsByYear W23210436702016 @default.
- W2321043670 countsByYear W23210436702017 @default.
- W2321043670 countsByYear W23210436702018 @default.
- W2321043670 countsByYear W23210436702019 @default.
- W2321043670 countsByYear W23210436702020 @default.
- W2321043670 countsByYear W23210436702021 @default.
- W2321043670 countsByYear W23210436702022 @default.
- W2321043670 countsByYear W23210436702023 @default.
- W2321043670 crossrefType "journal-article" @default.
- W2321043670 hasAuthorship W2321043670A5004903882 @default.
- W2321043670 hasAuthorship W2321043670A5039306865 @default.
- W2321043670 hasAuthorship W2321043670A5088916558 @default.
- W2321043670 hasConcept C10803110 @default.
- W2321043670 hasConcept C111472728 @default.
- W2321043670 hasConcept C121332964 @default.
- W2321043670 hasConcept C121864883 @default.
- W2321043670 hasConcept C138885662 @default.
- W2321043670 hasConcept C147597530 @default.
- W2321043670 hasConcept C154945302 @default.
- W2321043670 hasConcept C159467904 @default.
- W2321043670 hasConcept C166950319 @default.
- W2321043670 hasConcept C171250308 @default.
- W2321043670 hasConcept C178790620 @default.
- W2321043670 hasConcept C185592680 @default.
- W2321043670 hasConcept C192562407 @default.
- W2321043670 hasConcept C202444582 @default.
- W2321043670 hasConcept C2780586882 @default.
- W2321043670 hasConcept C32909587 @default.
- W2321043670 hasConcept C33923547 @default.
- W2321043670 hasConcept C41008148 @default.
- W2321043670 hasConcept C59593255 @default.
- W2321043670 hasConcept C9652623 @default.
- W2321043670 hasConceptScore W2321043670C10803110 @default.
- W2321043670 hasConceptScore W2321043670C111472728 @default.
- W2321043670 hasConceptScore W2321043670C121332964 @default.
- W2321043670 hasConceptScore W2321043670C121864883 @default.
- W2321043670 hasConceptScore W2321043670C138885662 @default.
- W2321043670 hasConceptScore W2321043670C147597530 @default.
- W2321043670 hasConceptScore W2321043670C154945302 @default.
- W2321043670 hasConceptScore W2321043670C159467904 @default.
- W2321043670 hasConceptScore W2321043670C166950319 @default.
- W2321043670 hasConceptScore W2321043670C171250308 @default.
- W2321043670 hasConceptScore W2321043670C178790620 @default.