Matches in SemOpenAlex for { <https://semopenalex.org/work/W2321200093> ?p ?o ?g. }
- W2321200093 endingPage "705" @default.
- W2321200093 startingPage "689" @default.
- W2321200093 abstract "The Baituyingzi Mo (Cu) deposit is a newly identified porphyry deposit located in the southern part of the Xilamulun Mo metallogenic belt, Northeast China. Mo (Cu) mineralization mainly occurs as quartz veinlets and stockwork veinlets in the potassic altered Baituyingzi monzogranite porphyry. A detailed investigation of fluid inclusions and OH isotopes from hydrothermal veins at Baituyingzi allow us to establish the evolving history of the fluid system, as well as understand factors controlling CuMo precipitation in CO2-rich fluids. Six vein types are recognized at Baituyingzi, which belong to five hydrothermal stages: (1) UST quartz vein, formed during magmatic-hydrothermal transitional stage; (2) A1 vein (sulfide-barren quartz vein) and A2 vein (quartz–pyrite–chalcopyrite ± molybdenite vein, Cu mineralization), related to potassic alteration; (3) B vein (quartz–molybdenite ± chalcopyrite ± pyrite vein, Mo mineralization), formed during the potassic-sericitic transitional stage; (4) D vein (quartz–pyrite ± molybdenite ± chalcopyrite vein), associated with sericitic alteration; and (5) late stage L vein (quartz–carbonate vein). Four types of fluid inclusions have been observed in these veins, i.e., liquid-rich inclusions (L-type), vapor-rich inclusions (V-type), polyphase high-salinity inclusions (S-type), and CO2-rich inclusions (C-type). UST quartz veins contain abundant S- and co-existing V-type inclusions, accompanied by minor melt inclusions, indicating that the parent fluids were likely in the form of bubbly magma (~ 10 wt% NaCl equiv.) that was derived from a deep magma chamber. A1 veins are dominated by coexisting S- and V-type inclusions that homogenized at temperatures ranging from 400° to 548.5 °C and pressures between 300 and 750 bar, which may represent the result of parent fluid immiscibility (vapor-brine) at depth. Apart from S- and V-type inclusions, Cu-bearing A2 veins are especially rich in isolated L-type inclusions (homogenized at 347 to 430 °C) that share the same salinity range as V-type inclusions (homogenized at 375 to 470 °C), suggesting that the vapor gradually contracted to a liquid phase at around 350 bar. Because the system was still in a lithostatic condition (revealed by textures of A2 veins), Cu precipitation at Baituyingzi was thus largely controlled by temperature reduction (to below 400 °C) near the vapor-liquid surface in relatively oxidized fluids (indicated by the precipitation of abundant hematite). C-type inclusions (homogenize at 275 to 350 °C) seem to be more widely developed, and they commonly co-exist with L-type inclusions (homogenized at 340 to 380 °C) of similar salinity in B veins, implying that they unmixed at temperatures below 350 °C and pressures below 200 bar. Considering that the system had already fluctuated to hydrostatic conditions (revealed by clear open-space filling textures), as well as considering the occurrence of minor feldspar-destructive alteration halos in B veins, Mo precipitation would likely be a result of water-CO2 immiscibility at temperatures below 350 °C with a sharp pressure reduction to below 200 bar and an increase in fluid acidity. D veins contain plentiful L- and minor C– and S-type inclusions that homogenized at lower temperatures (240 to 350 °C) and pressures (30 to 150 bar). The wide feldspar-destructive alteration halos indicate that the fluids became progressively more acidic and reacted intensely with wall-rocks. L veins only contain low temperature (168 to 280 °C) and low salinity (0.4 to 10.9 wt% NaCl equiv.) L-type inclusions, implying that meteoric water was introduced to the barren magmatic fluids, leading to precipitation of a large amount of remnant material. δ18O and δD isotope ratios in quartz (δ18Ofluid = 3.54‰ to 7.51‰, δD = − 107‰ to − 87‰) also confirm a primary magmatic origin for ore-forming fluids in earlier veins, except for L veins. Therefore, fluid evolution at Baituyingzi was characterized by relatively continuous, system-scale cooling along an ascent path gradually straddling the vapor-brine, vapor-liquid, and water–CO2 surface in the vapor-dominated H2OCO2NaCl fluid system, whereas the subtle temporal change in P-T-redox conditions and acid balance of the evolutionary paths of the magmatic fluid may be responsible for Cu and Mo separation at the Baituyingzi CO2–rich systems. Additionally, water-CO2 immiscibility seems to be an additional important mechanism that complicates Mo precipitation in CO2–rich systems." @default.
- W2321200093 created "2016-06-24" @default.
- W2321200093 creator A5000466445 @default.
- W2321200093 creator A5008368674 @default.
- W2321200093 creator A5018520682 @default.
- W2321200093 creator A5024848079 @default.
- W2321200093 creator A5037565273 @default.
- W2321200093 creator A5038798138 @default.
- W2321200093 creator A5042999171 @default.
- W2321200093 creator A5060006875 @default.
- W2321200093 creator A5070218233 @default.
- W2321200093 creator A5089745279 @default.
- W2321200093 date "2017-03-01" @default.
- W2321200093 modified "2023-09-25" @default.
- W2321200093 title "Geology and hydrothermal evolution of the Baituyingzi porphyry Mo (Cu) deposit, eastern Inner Mongolia, NE China: Implications for Mo and Cu precipitation mechanisms in CO 2 -rich fluids" @default.
- W2321200093 cites W1801327049 @default.
- W2321200093 cites W183765136 @default.
- W2321200093 cites W1966413771 @default.
- W2321200093 cites W1967827341 @default.
- W2321200093 cites W1967858742 @default.
- W2321200093 cites W1971616481 @default.
- W2321200093 cites W1990065887 @default.
- W2321200093 cites W1994184986 @default.
- W2321200093 cites W2008575948 @default.
- W2321200093 cites W2010539331 @default.
- W2321200093 cites W2013645350 @default.
- W2321200093 cites W2016423646 @default.
- W2321200093 cites W2020161194 @default.
- W2321200093 cites W2025140431 @default.
- W2321200093 cites W2029160306 @default.
- W2321200093 cites W2030023077 @default.
- W2321200093 cites W2030139888 @default.
- W2321200093 cites W2030484090 @default.
- W2321200093 cites W2032827575 @default.
- W2321200093 cites W2033490317 @default.
- W2321200093 cites W2035130206 @default.
- W2321200093 cites W2041735999 @default.
- W2321200093 cites W2047807381 @default.
- W2321200093 cites W2049153634 @default.
- W2321200093 cites W2053674395 @default.
- W2321200093 cites W2062957061 @default.
- W2321200093 cites W2066128949 @default.
- W2321200093 cites W2067897273 @default.
- W2321200093 cites W2077321423 @default.
- W2321200093 cites W2090757504 @default.
- W2321200093 cites W2093083567 @default.
- W2321200093 cites W2093740880 @default.
- W2321200093 cites W2098449299 @default.
- W2321200093 cites W2099782426 @default.
- W2321200093 cites W2100168657 @default.
- W2321200093 cites W2102879515 @default.
- W2321200093 cites W2103040999 @default.
- W2321200093 cites W2103618901 @default.
- W2321200093 cites W2108353466 @default.
- W2321200093 cites W2109763519 @default.
- W2321200093 cites W2114504059 @default.
- W2321200093 cites W2119991869 @default.
- W2321200093 cites W2123033462 @default.
- W2321200093 cites W2124642451 @default.
- W2321200093 cites W2127521842 @default.
- W2321200093 cites W2130869872 @default.
- W2321200093 cites W2139131101 @default.
- W2321200093 cites W2141042890 @default.
- W2321200093 cites W2159964821 @default.
- W2321200093 cites W2164264866 @default.
- W2321200093 cites W2165394332 @default.
- W2321200093 cites W2165498879 @default.
- W2321200093 cites W2196645806 @default.
- W2321200093 cites W2317337219 @default.
- W2321200093 doi "https://doi.org/10.1016/j.oregeorev.2016.03.023" @default.
- W2321200093 hasPublicationYear "2017" @default.
- W2321200093 type Work @default.
- W2321200093 sameAs 2321200093 @default.
- W2321200093 citedByCount "14" @default.
- W2321200093 countsByYear W23212000932016 @default.
- W2321200093 countsByYear W23212000932017 @default.
- W2321200093 countsByYear W23212000932018 @default.
- W2321200093 countsByYear W23212000932019 @default.
- W2321200093 countsByYear W23212000932020 @default.
- W2321200093 countsByYear W23212000932021 @default.
- W2321200093 countsByYear W23212000932022 @default.
- W2321200093 countsByYear W23212000932023 @default.
- W2321200093 crossrefType "journal-article" @default.
- W2321200093 hasAuthorship W2321200093A5000466445 @default.
- W2321200093 hasAuthorship W2321200093A5008368674 @default.
- W2321200093 hasAuthorship W2321200093A5018520682 @default.
- W2321200093 hasAuthorship W2321200093A5024848079 @default.
- W2321200093 hasAuthorship W2321200093A5037565273 @default.
- W2321200093 hasAuthorship W2321200093A5038798138 @default.
- W2321200093 hasAuthorship W2321200093A5042999171 @default.
- W2321200093 hasAuthorship W2321200093A5060006875 @default.
- W2321200093 hasAuthorship W2321200093A5070218233 @default.
- W2321200093 hasAuthorship W2321200093A5089745279 @default.
- W2321200093 hasConcept C111696902 @default.
- W2321200093 hasConcept C118552586 @default.
- W2321200093 hasConcept C127313418 @default.
- W2321200093 hasConcept C151730666 @default.
- W2321200093 hasConcept C156622251 @default.