Matches in SemOpenAlex for { <https://semopenalex.org/work/W2321301008> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2321301008 endingPage "365" @default.
- W2321301008 startingPage "365" @default.
- W2321301008 abstract "S. Smale, using his theory of handlebodies, has classified, under diffeomorphism closed, simply connected, smooth 5-manifolds with vanishing second Stiefel-Whitney class. C.T.C. Wall has given a classification of (n 1)-connected (2n + 1)-manifolds which does not however cover the case n = 2. In this paper we complete the classification of simply connected 5-manifolds. A.A.Markov has proved that a general classification of 5-manifolds is impossible, but it seems reasonable to hope for results in the case of 5-manifolds with a given fundamental group. The second Stiefel-Whitney class of a simply connected manifold may be regarded as a homomorphism w: H2(M; Z) Z, and we may arrange w to be non-zero on at most one element of a 'basis' (0.5), this element having order 2i for some i (Lemma C). Then i is a diffeomorphism invariant i(M) of M. If H2(X) -H(M), and i(X) = i(M), where X and M are simply connected 5-manifolds, then there are (0.8) isomorphisms 0: H2(X) H2(M) which preserve the linking form b on the torsion subgroups (0.7), and which satisfy w(M)oO = w(X). The basic theorem (2.2) states that any such isomorphism may be realized by a diffeomorphism of X with M. Thus H2(M) and i(M) form a complete set of invariants for the diffeomorphism classification. On the other hand b imposes restrictions on the second homology group (Lemma E), and hence on the decomposability of the manifolds. Using results of C.T.C.Wall on diffeomorphisms of 4-manifolds, it is possible to construct an example of an indecomposable manifold for each possible homology group (? 1) and, using these, to give a canonical manifold in each diffeomorphism class (Theorem 2.3). In addition to the main theorems, ?2 contains some corollaries and applications of them. The manner of construction of the indecomposable manifolds and manifolds similar to them produces minimal handle decompositions and allows the computation of embedding and immersion dimensions. The nature of the invariants also allows an extension of the results. The proof of Theorem 2.2 is omitted from ? 2 and occupies the remainder of the paper. X and M as above are necessarily cobordant (Lemma F), and the first step is to find a cobordism with minimal homotopy groups (? 3), i.e., one which is simply connected and with second homology group zero or, if iw(X) # 0, Z2. In ?4 modifications are described of which one enlarges the" @default.
- W2321301008 created "2016-06-24" @default.
- W2321301008 creator A5040934656 @default.
- W2321301008 date "1965-11-01" @default.
- W2321301008 modified "2023-10-04" @default.
- W2321301008 title "Simply Connected Five-Manifolds" @default.
- W2321301008 cites W1509036934 @default.
- W2321301008 cites W1509420953 @default.
- W2321301008 cites W1551313231 @default.
- W2321301008 cites W1588491121 @default.
- W2321301008 cites W1980124684 @default.
- W2321301008 cites W1989427081 @default.
- W2321301008 cites W1996294702 @default.
- W2321301008 cites W1999983561 @default.
- W2321301008 cites W2020574224 @default.
- W2321301008 cites W2027733118 @default.
- W2321301008 cites W2043554419 @default.
- W2321301008 cites W2056690023 @default.
- W2321301008 cites W2062977663 @default.
- W2321301008 cites W2092637653 @default.
- W2321301008 cites W2312457402 @default.
- W2321301008 cites W2335238306 @default.
- W2321301008 cites W2468762483 @default.
- W2321301008 cites W644098246 @default.
- W2321301008 doi "https://doi.org/10.2307/1970702" @default.
- W2321301008 hasPublicationYear "1965" @default.
- W2321301008 type Work @default.
- W2321301008 sameAs 2321301008 @default.
- W2321301008 citedByCount "182" @default.
- W2321301008 countsByYear W23213010082012 @default.
- W2321301008 countsByYear W23213010082013 @default.
- W2321301008 countsByYear W23213010082014 @default.
- W2321301008 countsByYear W23213010082015 @default.
- W2321301008 countsByYear W23213010082016 @default.
- W2321301008 countsByYear W23213010082017 @default.
- W2321301008 countsByYear W23213010082018 @default.
- W2321301008 countsByYear W23213010082019 @default.
- W2321301008 countsByYear W23213010082020 @default.
- W2321301008 countsByYear W23213010082021 @default.
- W2321301008 countsByYear W23213010082022 @default.
- W2321301008 countsByYear W23213010082023 @default.
- W2321301008 crossrefType "journal-article" @default.
- W2321301008 hasAuthorship W2321301008A5040934656 @default.
- W2321301008 hasConcept C167204820 @default.
- W2321301008 hasConcept C202444582 @default.
- W2321301008 hasConcept C33923547 @default.
- W2321301008 hasConcept C50955798 @default.
- W2321301008 hasConceptScore W2321301008C167204820 @default.
- W2321301008 hasConceptScore W2321301008C202444582 @default.
- W2321301008 hasConceptScore W2321301008C33923547 @default.
- W2321301008 hasConceptScore W2321301008C50955798 @default.
- W2321301008 hasIssue "3" @default.
- W2321301008 hasLocation W23213010081 @default.
- W2321301008 hasOpenAccess W2321301008 @default.
- W2321301008 hasPrimaryLocation W23213010081 @default.
- W2321301008 hasRelatedWork W1557945163 @default.
- W2321301008 hasRelatedWork W1985218657 @default.
- W2321301008 hasRelatedWork W2064847051 @default.
- W2321301008 hasRelatedWork W2096753949 @default.
- W2321301008 hasRelatedWork W2122764778 @default.
- W2321301008 hasRelatedWork W2742285599 @default.
- W2321301008 hasRelatedWork W2885950881 @default.
- W2321301008 hasRelatedWork W2963341196 @default.
- W2321301008 hasRelatedWork W3124205579 @default.
- W2321301008 hasRelatedWork W4249580765 @default.
- W2321301008 hasVolume "82" @default.
- W2321301008 isParatext "false" @default.
- W2321301008 isRetracted "false" @default.
- W2321301008 magId "2321301008" @default.
- W2321301008 workType "article" @default.