Matches in SemOpenAlex for { <https://semopenalex.org/work/W2321458978> ?p ?o ?g. }
- W2321458978 abstract "Abstract Oil field Operations such as wellbore stability Management and variety of other activities in the upstream petroleum industry require geo-mechanical models for their analysis. Sometimes, the required subsurface measurements used to estimate rock parameters for building such models are unavailable. On this premise, past studies have offered variety of methods and investigative techniques such as empirical correlations, statistical analysis and numerical models to generate these data from available information. However, the complexity of the relationships that exists between the natural occurring variables make the aforementioned techniques limited. This work involves the application of Artificial Neural Networks (ANNs) to generating rock properties. A three-layer back-propagation neural network model was applied predicting pseudo-sonic data using conventional wireline log data as input. Four well data from a Niger-Delta field were used in this study, one for training, one for validating and the two others for generating and testing results. The network was trained with different sets of initial random weights and biases using various learning algorithms. Root mean square error (RMSE) and correlation coefficient (CC) were used as key performance indicators. This Neural-Network-Generated-Sonic-log was compared with those generated with existing correlations and statistical analysis. The results showed that the most influential input vectors with various configurations for predicting sonic log were Depth-Resistivity-Gamma ray-Density (with correlating coefficient between 0.7 and 0.9). The generated sonic was subsequently used to compute for other elastic properties needed to build mechanical earth model for evaluating the strength properties of drilled formations, hence optimise drilling performance. The models are useful in Minimizing well cost, as well as reducing Non Productive Time (NPT) caused by wellbore instability. This technique is particularly useful for mature fields, especially in situations where obtaining this well logs are usually not practicable." @default.
- W2321458978 created "2016-06-24" @default.
- W2321458978 creator A5003287912 @default.
- W2321458978 creator A5048704953 @default.
- W2321458978 creator A5051393905 @default.
- W2321458978 date "2015-08-04" @default.
- W2321458978 modified "2023-09-26" @default.
- W2321458978 title "Application of Computational Intelligence in Generating Synthetic Reservoir Rock Mechanical Parameters for Building Geo-Models." @default.
- W2321458978 cites W1966630873 @default.
- W2321458978 cites W1967125730 @default.
- W2321458978 cites W1970289169 @default.
- W2321458978 cites W1974688028 @default.
- W2321458978 cites W1976413973 @default.
- W2321458978 cites W1988544392 @default.
- W2321458978 cites W1989747687 @default.
- W2321458978 cites W1990476081 @default.
- W2321458978 cites W1996955974 @default.
- W2321458978 cites W2010035147 @default.
- W2321458978 cites W2015303446 @default.
- W2321458978 cites W2016642951 @default.
- W2321458978 cites W2018671725 @default.
- W2321458978 cites W2019170911 @default.
- W2321458978 cites W2023411458 @default.
- W2321458978 cites W2024972158 @default.
- W2321458978 cites W2031818203 @default.
- W2321458978 cites W2032403020 @default.
- W2321458978 cites W2036871300 @default.
- W2321458978 cites W2039684319 @default.
- W2321458978 cites W2059846335 @default.
- W2321458978 cites W2072180799 @default.
- W2321458978 cites W2083826621 @default.
- W2321458978 cites W2134924775 @default.
- W2321458978 cites W4230366922 @default.
- W2321458978 cites W4300185451 @default.
- W2321458978 doi "https://doi.org/10.2118/178401-ms" @default.
- W2321458978 hasPublicationYear "2015" @default.
- W2321458978 type Work @default.
- W2321458978 sameAs 2321458978 @default.
- W2321458978 citedByCount "0" @default.
- W2321458978 crossrefType "proceedings-article" @default.
- W2321458978 hasAuthorship W2321458978A5003287912 @default.
- W2321458978 hasAuthorship W2321458978A5048704953 @default.
- W2321458978 hasAuthorship W2321458978A5051393905 @default.
- W2321458978 hasConcept C105795698 @default.
- W2321458978 hasConcept C11413529 @default.
- W2321458978 hasConcept C119857082 @default.
- W2321458978 hasConcept C124101348 @default.
- W2321458978 hasConcept C127313418 @default.
- W2321458978 hasConcept C133199616 @default.
- W2321458978 hasConcept C139945424 @default.
- W2321458978 hasConcept C154945302 @default.
- W2321458978 hasConcept C202444582 @default.
- W2321458978 hasConcept C2776364302 @default.
- W2321458978 hasConcept C2776951270 @default.
- W2321458978 hasConcept C2780092901 @default.
- W2321458978 hasConcept C33923547 @default.
- W2321458978 hasConcept C35817400 @default.
- W2321458978 hasConcept C41008148 @default.
- W2321458978 hasConcept C44154836 @default.
- W2321458978 hasConcept C50644808 @default.
- W2321458978 hasConcept C555944384 @default.
- W2321458978 hasConcept C76155785 @default.
- W2321458978 hasConcept C78762247 @default.
- W2321458978 hasConcept C9652623 @default.
- W2321458978 hasConceptScore W2321458978C105795698 @default.
- W2321458978 hasConceptScore W2321458978C11413529 @default.
- W2321458978 hasConceptScore W2321458978C119857082 @default.
- W2321458978 hasConceptScore W2321458978C124101348 @default.
- W2321458978 hasConceptScore W2321458978C127313418 @default.
- W2321458978 hasConceptScore W2321458978C133199616 @default.
- W2321458978 hasConceptScore W2321458978C139945424 @default.
- W2321458978 hasConceptScore W2321458978C154945302 @default.
- W2321458978 hasConceptScore W2321458978C202444582 @default.
- W2321458978 hasConceptScore W2321458978C2776364302 @default.
- W2321458978 hasConceptScore W2321458978C2776951270 @default.
- W2321458978 hasConceptScore W2321458978C2780092901 @default.
- W2321458978 hasConceptScore W2321458978C33923547 @default.
- W2321458978 hasConceptScore W2321458978C35817400 @default.
- W2321458978 hasConceptScore W2321458978C41008148 @default.
- W2321458978 hasConceptScore W2321458978C44154836 @default.
- W2321458978 hasConceptScore W2321458978C50644808 @default.
- W2321458978 hasConceptScore W2321458978C555944384 @default.
- W2321458978 hasConceptScore W2321458978C76155785 @default.
- W2321458978 hasConceptScore W2321458978C78762247 @default.
- W2321458978 hasConceptScore W2321458978C9652623 @default.
- W2321458978 hasLocation W23214589781 @default.
- W2321458978 hasOpenAccess W2321458978 @default.
- W2321458978 hasPrimaryLocation W23214589781 @default.
- W2321458978 hasRelatedWork W176830014 @default.
- W2321458978 hasRelatedWork W1975498718 @default.
- W2321458978 hasRelatedWork W2123844126 @default.
- W2321458978 hasRelatedWork W2408610915 @default.
- W2321458978 hasRelatedWork W2519033143 @default.
- W2321458978 hasRelatedWork W2995227436 @default.
- W2321458978 hasRelatedWork W4233817697 @default.
- W2321458978 hasRelatedWork W4288754364 @default.
- W2321458978 hasRelatedWork W1629725936 @default.
- W2321458978 hasRelatedWork W2321516359 @default.
- W2321458978 isParatext "false" @default.
- W2321458978 isRetracted "false" @default.