Matches in SemOpenAlex for { <https://semopenalex.org/work/W2321536610> ?p ?o ?g. }
- W2321536610 endingPage "385" @default.
- W2321536610 startingPage "365" @default.
- W2321536610 abstract "The recovery of microstructure-related features of the brain's white matter is a current challenge in diffusion MRI. To robustly estimate these important features from multi-shell diffusion MRI data, we propose to analytically regularize the coefficient estimation of the Mean Apparent Propagator (MAP)-MRI method using the norm of the Laplacian of the reconstructed signal. We first compare our approach, which we call MAPL, with competing, state-of-the-art functional basis approaches. We show that it outperforms the original MAP-MRI implementation and the recently proposed modified Spherical Polar Fourier (mSPF) basis with respect to signal fitting and reconstruction of the Ensemble Average Propagator (EAP) and Orientation Distribution Function (ODF) in noisy, sparsely sampled data of a physical phantom with reference gold standard data. Then, to reduce the variance of parameter estimation using multi-compartment tissue models, we propose to use MAPL's signal fitting and extrapolation as a preprocessing step. We study the effect of MAPL on the estimation of axon diameter using a simplified Axcaliber model and axonal dispersion using the Neurite Orientation Dispersion and Density Imaging (NODDI) model. We show the positive effect of using it as a preprocessing step in estimating and reducing the variances of these parameters in the Corpus Callosum of six different subjects of the MGH Human Connectome Project. Finally, we correlate the estimated axon diameter, dispersion and restricted volume fractions with Fractional Anisotropy (FA) and clearly show that changes in FA significantly correlate with changes in all estimated parameters. Overall, we illustrate the potential of using a well-regularized functional basis together with multi-compartment approaches to recover important microstructure tissue parameters with much less variability, thus contributing to the challenge of better understanding microstructure-related features of the brain's white matter." @default.
- W2321536610 created "2016-06-24" @default.
- W2321536610 creator A5002746413 @default.
- W2321536610 creator A5012091136 @default.
- W2321536610 creator A5082632190 @default.
- W2321536610 creator A5085647476 @default.
- W2321536610 date "2016-07-01" @default.
- W2321536610 modified "2023-10-03" @default.
- W2321536610 title "MAPL: Tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data" @default.
- W2321536610 cites W1964802316 @default.
- W2321536610 cites W1971405799 @default.
- W2321536610 cites W1974508089 @default.
- W2321536610 cites W1975017507 @default.
- W2321536610 cites W1981176642 @default.
- W2321536610 cites W1983208069 @default.
- W2321536610 cites W1985868293 @default.
- W2321536610 cites W1987263024 @default.
- W2321536610 cites W1988720018 @default.
- W2321536610 cites W1988954604 @default.
- W2321536610 cites W1991129928 @default.
- W2321536610 cites W2000359198 @default.
- W2321536610 cites W2011015491 @default.
- W2321536610 cites W2012723154 @default.
- W2321536610 cites W2019737946 @default.
- W2321536610 cites W2020044743 @default.
- W2321536610 cites W2021173709 @default.
- W2321536610 cites W2022237952 @default.
- W2321536610 cites W2024729467 @default.
- W2321536610 cites W2024739052 @default.
- W2321536610 cites W2032254014 @default.
- W2321536610 cites W2040812980 @default.
- W2321536610 cites W2044904021 @default.
- W2321536610 cites W2045726965 @default.
- W2321536610 cites W2046529900 @default.
- W2321536610 cites W2049223989 @default.
- W2321536610 cites W2050873013 @default.
- W2321536610 cites W2053759320 @default.
- W2321536610 cites W2055628268 @default.
- W2321536610 cites W2056232814 @default.
- W2321536610 cites W2056275659 @default.
- W2321536610 cites W2060757311 @default.
- W2321536610 cites W2062791478 @default.
- W2321536610 cites W2068860991 @default.
- W2321536610 cites W2077203280 @default.
- W2321536610 cites W2080616291 @default.
- W2321536610 cites W2092934217 @default.
- W2321536610 cites W2093944773 @default.
- W2321536610 cites W2101203185 @default.
- W2321536610 cites W2105034852 @default.
- W2321536610 cites W2107806811 @default.
- W2321536610 cites W2111508341 @default.
- W2321536610 cites W2114809469 @default.
- W2321536610 cites W2122662954 @default.
- W2321536610 cites W2127635814 @default.
- W2321536610 cites W2142059961 @default.
- W2321536610 cites W2159366244 @default.
- W2321536610 cites W2161593318 @default.
- W2321536610 cites W2162699798 @default.
- W2321536610 cites W2166496643 @default.
- W2321536610 cites W2171659494 @default.
- W2321536610 cites W2175900216 @default.
- W2321536610 cites W3000332379 @default.
- W2321536610 doi "https://doi.org/10.1016/j.neuroimage.2016.03.046" @default.
- W2321536610 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27043358" @default.
- W2321536610 hasPublicationYear "2016" @default.
- W2321536610 type Work @default.
- W2321536610 sameAs 2321536610 @default.
- W2321536610 citedByCount "91" @default.
- W2321536610 countsByYear W23215366102016 @default.
- W2321536610 countsByYear W23215366102017 @default.
- W2321536610 countsByYear W23215366102018 @default.
- W2321536610 countsByYear W23215366102019 @default.
- W2321536610 countsByYear W23215366102020 @default.
- W2321536610 countsByYear W23215366102021 @default.
- W2321536610 countsByYear W23215366102022 @default.
- W2321536610 countsByYear W23215366102023 @default.
- W2321536610 crossrefType "journal-article" @default.
- W2321536610 hasAuthorship W2321536610A5002746413 @default.
- W2321536610 hasAuthorship W2321536610A5012091136 @default.
- W2321536610 hasAuthorship W2321536610A5082632190 @default.
- W2321536610 hasAuthorship W2321536610A5085647476 @default.
- W2321536610 hasBestOaLocation W23215366102 @default.
- W2321536610 hasConcept C11413529 @default.
- W2321536610 hasConcept C120665830 @default.
- W2321536610 hasConcept C121332964 @default.
- W2321536610 hasConcept C126838900 @default.
- W2321536610 hasConcept C132459708 @default.
- W2321536610 hasConcept C134306372 @default.
- W2321536610 hasConcept C143409427 @default.
- W2321536610 hasConcept C149550507 @default.
- W2321536610 hasConcept C153180895 @default.
- W2321536610 hasConcept C153258448 @default.
- W2321536610 hasConcept C154945302 @default.
- W2321536610 hasConcept C16345878 @default.
- W2321536610 hasConcept C169760540 @default.
- W2321536610 hasConcept C2524010 @default.
- W2321536610 hasConcept C3018011982 @default.
- W2321536610 hasConcept C33923547 @default.