Matches in SemOpenAlex for { <https://semopenalex.org/work/W2321796342> ?p ?o ?g. }
- W2321796342 endingPage "759" @default.
- W2321796342 startingPage "753" @default.
- W2321796342 abstract "Nanosilver’s (nanoAg) use in medical applications and consumer products is increasing. Because of this, its “green” synthesis and surface modification with beneficial coatings are desirable. Given nanoAg’s potential exposure routes (e.g., dermal, intestinal, pulmonary), questions on its potential to move through these “port of entry” barriers and enter the body’s circulatory system remain unanswered. In view of nanoAg’s free radical activity and the brain’s sensitivity to oxidative stress damage, the possibility that nanoAg particles can move from the systemic circulation, transport through the blood-brain barrier (BBB), and pose a neurotoxic threat is also a legitimate concern. Because of these issues, this study addresses an initial event of barrier transport, that is, if “green” synthesized nanoAg, coated with green tea polyphenols (GT) or glutathione (GSH), can alter the permeability of human intestinal epithelial (Caco-2) or rat brain endothelial (RBEC4) barrier cells. Additionally, it asks if such “green” synthesized nanoAg modifies its toxicity to oxidative stress-sensitive cultured neurons (N27). Physicochemical (PC) characterization of conventionally synthesized nanoAg and “green” synthesized nanoAg-GT or nanoAg-GSH indicated that all samples aggregated (>500–2500 nm) when suspended in cell culture exposure media. NanoAg-GSH showed the least electronegative zeta potential and largest aggregate size in both Caco-2 and RBEC4 exposure media, relative to conventional nanoAg. Transcellular resistance measures indicated that within 15 min of exposure to 6.5 ppm, both conventional and nanoAg-GSH altered the permeability of intestinal Caco-2 monolayers, and all nanoAg treatments altered the permeability of RBEC4 brain endothelial cells. To examine if a differential toxicity existed in the response of oxidative stress-sensitive neurons, a noncytotoxic (1.0 ppm) concentration of each nanoAg material was exposed (18 h) to rat dopaminergic neurons (N27), transfected with a NFκβ reporter gene. Results indicated that all nanoAg samples significantly stimulated this oxidative stress pathway in the N27 neuron. Together, these data suggest that both conventional and “green” synthesized coated nanoAg alter the permeability of barrier cell membranes and activate oxidative stress pathways in target neurons, equivocally." @default.
- W2321796342 created "2016-06-24" @default.
- W2321796342 creator A5021015220 @default.
- W2321796342 creator A5023019016 @default.
- W2321796342 creator A5070521614 @default.
- W2321796342 creator A5084552394 @default.
- W2321796342 date "2013-04-25" @default.
- W2321796342 modified "2023-10-16" @default.
- W2321796342 title "“Green” Synthesized and Coated Nanosilver Alters the Membrane Permeability of Barrier (Intestinal, Brain Endothelial) Cells and Stimulates Oxidative Stress Pathways in Neurons" @default.
- W2321796342 cites W1506970858 @default.
- W2321796342 cites W1965084584 @default.
- W2321796342 cites W1968502849 @default.
- W2321796342 cites W1972502322 @default.
- W2321796342 cites W1972570110 @default.
- W2321796342 cites W1972969791 @default.
- W2321796342 cites W1973083599 @default.
- W2321796342 cites W1976304292 @default.
- W2321796342 cites W1977073394 @default.
- W2321796342 cites W1978695076 @default.
- W2321796342 cites W1979196526 @default.
- W2321796342 cites W1982693949 @default.
- W2321796342 cites W1983835769 @default.
- W2321796342 cites W1985541256 @default.
- W2321796342 cites W1986448801 @default.
- W2321796342 cites W1987197449 @default.
- W2321796342 cites W1993914665 @default.
- W2321796342 cites W1994470556 @default.
- W2321796342 cites W2000939249 @default.
- W2321796342 cites W2005408173 @default.
- W2321796342 cites W2007297983 @default.
- W2321796342 cites W2007609627 @default.
- W2321796342 cites W2009792330 @default.
- W2321796342 cites W2017432477 @default.
- W2321796342 cites W2019702066 @default.
- W2321796342 cites W2019957892 @default.
- W2321796342 cites W2020915539 @default.
- W2321796342 cites W2022693475 @default.
- W2321796342 cites W2024024428 @default.
- W2321796342 cites W2025785072 @default.
- W2321796342 cites W2028049079 @default.
- W2321796342 cites W2032148908 @default.
- W2321796342 cites W2035360955 @default.
- W2321796342 cites W2039433532 @default.
- W2321796342 cites W2040170879 @default.
- W2321796342 cites W2040231410 @default.
- W2321796342 cites W2043804359 @default.
- W2321796342 cites W2044766771 @default.
- W2321796342 cites W2053608702 @default.
- W2321796342 cites W2057047451 @default.
- W2321796342 cites W2071270605 @default.
- W2321796342 cites W2073862893 @default.
- W2321796342 cites W2073879789 @default.
- W2321796342 cites W2082647909 @default.
- W2321796342 cites W2087234654 @default.
- W2321796342 cites W2091671865 @default.
- W2321796342 cites W2093408982 @default.
- W2321796342 cites W2101809587 @default.
- W2321796342 cites W2112986223 @default.
- W2321796342 cites W2114064632 @default.
- W2321796342 cites W2120112471 @default.
- W2321796342 cites W2124693318 @default.
- W2321796342 cites W2133464603 @default.
- W2321796342 cites W2138210859 @default.
- W2321796342 cites W2146385374 @default.
- W2321796342 cites W2147978717 @default.
- W2321796342 cites W2150911019 @default.
- W2321796342 cites W2153351158 @default.
- W2321796342 cites W2163075498 @default.
- W2321796342 cites W2168709353 @default.
- W2321796342 cites W2169466661 @default.
- W2321796342 cites W2172257351 @default.
- W2321796342 cites W2206202970 @default.
- W2321796342 cites W2314008868 @default.
- W2321796342 cites W2314302442 @default.
- W2321796342 cites W2331190804 @default.
- W2321796342 cites W2334989887 @default.
- W2321796342 cites W4235367057 @default.
- W2321796342 cites W67908481 @default.
- W2321796342 doi "https://doi.org/10.1021/sc400024a" @default.
- W2321796342 hasPublicationYear "2013" @default.
- W2321796342 type Work @default.
- W2321796342 sameAs 2321796342 @default.
- W2321796342 citedByCount "29" @default.
- W2321796342 countsByYear W23217963422013 @default.
- W2321796342 countsByYear W23217963422014 @default.
- W2321796342 countsByYear W23217963422015 @default.
- W2321796342 countsByYear W23217963422016 @default.
- W2321796342 countsByYear W23217963422017 @default.
- W2321796342 countsByYear W23217963422018 @default.
- W2321796342 countsByYear W23217963422019 @default.
- W2321796342 countsByYear W23217963422020 @default.
- W2321796342 countsByYear W23217963422021 @default.
- W2321796342 countsByYear W23217963422022 @default.
- W2321796342 countsByYear W23217963422023 @default.
- W2321796342 crossrefType "journal-article" @default.
- W2321796342 hasAuthorship W2321796342A5021015220 @default.
- W2321796342 hasAuthorship W2321796342A5023019016 @default.
- W2321796342 hasAuthorship W2321796342A5070521614 @default.