Matches in SemOpenAlex for { <https://semopenalex.org/work/W2321807183> ?p ?o ?g. }
- W2321807183 endingPage "10451" @default.
- W2321807183 startingPage "10434" @default.
- W2321807183 abstract "Development of reusable liquid-hydrocarbon-fueled hypersonic vehicles requires improved understanding of the effect of chemical composition on the controlling reaction chemistry and deposition propensity as the fuel is used to cool the system. In this effort, supercritical pyrolytic stressing studies were performed using two petroleum-derived fuels and a Synthetic Paraffinic Kerosene (SPK) comprised predominantly of normal and branched paraffins. All fuels decomposed via free radical pathways with high yields of unsaturates and lower molecular weight products consistent with pyrolysis at high pressures and moderate temperatures. However, the SPK was significantly more reactive than the petroleum-derived fuels due to a lack of efficient hydrogen donors that act to terminate chain reactions (higher net propagation rate). High-pressure liquid chromatography was used to identify and quantify polycyclic aromatic hydrocarbons (PAH) in the stressed fuels, conclusively determining that these are produced during thermal stressing. A notable observation was the presence of PAH during SPK stressing, as the neat fuel did not contain cyclic precursors for growth to PAH. During stressing with stainless-steel tubing, the formation of filamentous deposits via metal-catalyzed reactions of stressed fuel components with reactor surfaces was observed for all fuels studied. However, the SPK fuel exhibited a much higher pyrolytic deposition rate, which was attributed to higher lateral growth rates of surface filaments via noncatalytic free radical addition pathways. The PAH formed during SPK stressing are indicators of the highly reactive intermediates prone to participating in the surface coke addition pathways. Studies blending benzene with the SPK indicated that low PAH solubility in the paraffinic fuel is not the dominant cause for the high deposition propensity. Testing with the petroleum-derived fuels showed that metal sulfide filament formation can occur under endothermic conditions, and higher fuel sulfur content can increase carbon deposition propensity. Studies with surface passivated tubing (Silcosteel) suppressed filamentous carbon formation and rendered a substantial reduction in SPK deposition to levels similar to the petroleum-derived fuels. Overall, these studies provided guidance regarding the controlling chemistry during supercritical pyrolysis of current and potential synthetic hydrocarbon fuels and insight into prevalent deposition pathways." @default.
- W2321807183 created "2016-06-24" @default.
- W2321807183 creator A5010581128 @default.
- W2321807183 creator A5017689418 @default.
- W2321807183 creator A5019787730 @default.
- W2321807183 creator A5024000249 @default.
- W2321807183 creator A5024889508 @default.
- W2321807183 creator A5054355179 @default.
- W2321807183 creator A5081816025 @default.
- W2321807183 date "2011-08-25" @default.
- W2321807183 modified "2023-09-26" @default.
- W2321807183 title "Effect of Aviation Fuel Type on Pyrolytic Reactivity and Deposition Propensity under Supercritical Conditions" @default.
- W2321807183 cites W1565512597 @default.
- W2321807183 cites W1965314067 @default.
- W2321807183 cites W1967410395 @default.
- W2321807183 cites W1967769048 @default.
- W2321807183 cites W1977702991 @default.
- W2321807183 cites W1983733787 @default.
- W2321807183 cites W1986882909 @default.
- W2321807183 cites W1987703778 @default.
- W2321807183 cites W1988949795 @default.
- W2321807183 cites W1992665070 @default.
- W2321807183 cites W1993329478 @default.
- W2321807183 cites W2000371764 @default.
- W2321807183 cites W2001359264 @default.
- W2321807183 cites W2004029120 @default.
- W2321807183 cites W2004971893 @default.
- W2321807183 cites W2007018190 @default.
- W2321807183 cites W2007359781 @default.
- W2321807183 cites W2009828493 @default.
- W2321807183 cites W2013403547 @default.
- W2321807183 cites W2014776931 @default.
- W2321807183 cites W2015189638 @default.
- W2321807183 cites W2016638797 @default.
- W2321807183 cites W2019124354 @default.
- W2321807183 cites W2030627794 @default.
- W2321807183 cites W2031841778 @default.
- W2321807183 cites W2036544200 @default.
- W2321807183 cites W2040809814 @default.
- W2321807183 cites W2041371698 @default.
- W2321807183 cites W2043674152 @default.
- W2321807183 cites W2048596035 @default.
- W2321807183 cites W2052583264 @default.
- W2321807183 cites W2056859543 @default.
- W2321807183 cites W2057727620 @default.
- W2321807183 cites W2058119837 @default.
- W2321807183 cites W2058617771 @default.
- W2321807183 cites W2059371913 @default.
- W2321807183 cites W2059483721 @default.
- W2321807183 cites W2062311567 @default.
- W2321807183 cites W2064429677 @default.
- W2321807183 cites W2066627447 @default.
- W2321807183 cites W2079281832 @default.
- W2321807183 cites W2079582831 @default.
- W2321807183 cites W2079963144 @default.
- W2321807183 cites W2082022403 @default.
- W2321807183 cites W2082871567 @default.
- W2321807183 cites W2088145430 @default.
- W2321807183 cites W2314380717 @default.
- W2321807183 cites W2315185417 @default.
- W2321807183 cites W2318164033 @default.
- W2321807183 cites W2323914242 @default.
- W2321807183 cites W2323949211 @default.
- W2321807183 cites W2329055302 @default.
- W2321807183 cites W2333524797 @default.
- W2321807183 cites W2335603089 @default.
- W2321807183 cites W2585391496 @default.
- W2321807183 cites W4245761054 @default.
- W2321807183 cites W2081484906 @default.
- W2321807183 doi "https://doi.org/10.1021/ie200257b" @default.
- W2321807183 hasPublicationYear "2011" @default.
- W2321807183 type Work @default.
- W2321807183 sameAs 2321807183 @default.
- W2321807183 citedByCount "88" @default.
- W2321807183 countsByYear W23218071832012 @default.
- W2321807183 countsByYear W23218071832013 @default.
- W2321807183 countsByYear W23218071832014 @default.
- W2321807183 countsByYear W23218071832015 @default.
- W2321807183 countsByYear W23218071832016 @default.
- W2321807183 countsByYear W23218071832017 @default.
- W2321807183 countsByYear W23218071832018 @default.
- W2321807183 countsByYear W23218071832019 @default.
- W2321807183 countsByYear W23218071832020 @default.
- W2321807183 countsByYear W23218071832021 @default.
- W2321807183 countsByYear W23218071832022 @default.
- W2321807183 countsByYear W23218071832023 @default.
- W2321807183 crossrefType "journal-article" @default.
- W2321807183 hasAuthorship W2321807183A5010581128 @default.
- W2321807183 hasAuthorship W2321807183A5017689418 @default.
- W2321807183 hasAuthorship W2321807183A5019787730 @default.
- W2321807183 hasAuthorship W2321807183A5024000249 @default.
- W2321807183 hasAuthorship W2321807183A5024889508 @default.
- W2321807183 hasAuthorship W2321807183A5054355179 @default.
- W2321807183 hasAuthorship W2321807183A5081816025 @default.
- W2321807183 hasConcept C107872376 @default.
- W2321807183 hasConcept C118419359 @default.
- W2321807183 hasConcept C127413603 @default.
- W2321807183 hasConcept C178790620 @default.