Matches in SemOpenAlex for { <https://semopenalex.org/work/W2321826012> ?p ?o ?g. }
- W2321826012 abstract "Dimensionality reduction and anomalous data detection are important tasks in machine learning and data mining applications. Many real-world datasets are affected by errors and variable redundancy and this fact can generate problems when the data are used to develop accurate models exploiting some training procedures for parameters tuning. In this paper an automatic procedure is proposed combining detection of unreliable data and reduction of dimensionality to be adopted before exploiting the data to develop a model for prediction purposes. The method has been tested on several datasets belonging to the UCI repository and industrial fields. The results of tests are showed and discussed in the paper. The proposed approach provide a good prediction accuracy providing a minimal but essential dataset." @default.
- W2321826012 created "2016-06-24" @default.
- W2321826012 creator A5024534618 @default.
- W2321826012 creator A5033400760 @default.
- W2321826012 creator A5070598302 @default.
- W2321826012 creator A5081753833 @default.
- W2321826012 date "2014-01-01" @default.
- W2321826012 modified "2023-10-05" @default.
- W2321826012 title "A Procedure for Building Reduced Reliable Training Datasets from Real-World Data" @default.
- W2321826012 cites W103324506 @default.
- W2321826012 cites W1502050276 @default.
- W2321826012 cites W1540596182 @default.
- W2321826012 cites W1552339598 @default.
- W2321826012 cites W1652242680 @default.
- W2321826012 cites W1827192537 @default.
- W2321826012 cites W1885262319 @default.
- W2321826012 cites W1966420811 @default.
- W2321826012 cites W1966701961 @default.
- W2321826012 cites W1970655212 @default.
- W2321826012 cites W1980746389 @default.
- W2321826012 cites W1982418571 @default.
- W2321826012 cites W1992176519 @default.
- W2321826012 cites W1997694397 @default.
- W2321826012 cites W2015981295 @default.
- W2321826012 cites W2017337590 @default.
- W2321826012 cites W2017818759 @default.
- W2321826012 cites W2019683663 @default.
- W2321826012 cites W2031826522 @default.
- W2321826012 cites W2033440610 @default.
- W2321826012 cites W2034418625 @default.
- W2321826012 cites W2049058890 @default.
- W2321826012 cites W2051796856 @default.
- W2321826012 cites W2096249757 @default.
- W2321826012 cites W2096614992 @default.
- W2321826012 cites W2098447225 @default.
- W2321826012 cites W2098515060 @default.
- W2321826012 cites W2099973476 @default.
- W2321826012 cites W2100534701 @default.
- W2321826012 cites W2103459159 @default.
- W2321826012 cites W2106437164 @default.
- W2321826012 cites W2113076747 @default.
- W2321826012 cites W2113890143 @default.
- W2321826012 cites W2119479037 @default.
- W2321826012 cites W2120858182 @default.
- W2321826012 cites W2124776405 @default.
- W2321826012 cites W2129249398 @default.
- W2321826012 cites W2129542355 @default.
- W2321826012 cites W2133321814 @default.
- W2321826012 cites W213706448 @default.
- W2321826012 cites W2137130182 @default.
- W2321826012 cites W2144182447 @default.
- W2321826012 cites W2148610006 @default.
- W2321826012 cites W2148685209 @default.
- W2321826012 cites W2149772057 @default.
- W2321826012 cites W2154029067 @default.
- W2321826012 cites W2157655524 @default.
- W2321826012 cites W2158508433 @default.
- W2321826012 cites W2331052961 @default.
- W2321826012 cites W2333187797 @default.
- W2321826012 cites W2543042493 @default.
- W2321826012 cites W2552913538 @default.
- W2321826012 cites W2789595241 @default.
- W2321826012 cites W2137690751 @default.
- W2321826012 cites W2532138367 @default.
- W2321826012 cites W2548133570 @default.
- W2321826012 cites W2555051526 @default.
- W2321826012 doi "https://doi.org/10.2316/p.2014.816-010" @default.
- W2321826012 hasPublicationYear "2014" @default.
- W2321826012 type Work @default.
- W2321826012 sameAs 2321826012 @default.
- W2321826012 citedByCount "10" @default.
- W2321826012 countsByYear W23218260122014 @default.
- W2321826012 countsByYear W23218260122016 @default.
- W2321826012 countsByYear W23218260122018 @default.
- W2321826012 countsByYear W23218260122019 @default.
- W2321826012 countsByYear W23218260122021 @default.
- W2321826012 countsByYear W23218260122022 @default.
- W2321826012 crossrefType "proceedings-article" @default.
- W2321826012 hasAuthorship W2321826012A5024534618 @default.
- W2321826012 hasAuthorship W2321826012A5033400760 @default.
- W2321826012 hasAuthorship W2321826012A5070598302 @default.
- W2321826012 hasAuthorship W2321826012A5081753833 @default.
- W2321826012 hasConcept C121332964 @default.
- W2321826012 hasConcept C124101348 @default.
- W2321826012 hasConcept C153294291 @default.
- W2321826012 hasConcept C154945302 @default.
- W2321826012 hasConcept C2522767166 @default.
- W2321826012 hasConcept C2777211547 @default.
- W2321826012 hasConcept C3020493868 @default.
- W2321826012 hasConcept C41008148 @default.
- W2321826012 hasConcept C51632099 @default.
- W2321826012 hasConceptScore W2321826012C121332964 @default.
- W2321826012 hasConceptScore W2321826012C124101348 @default.
- W2321826012 hasConceptScore W2321826012C153294291 @default.
- W2321826012 hasConceptScore W2321826012C154945302 @default.
- W2321826012 hasConceptScore W2321826012C2522767166 @default.
- W2321826012 hasConceptScore W2321826012C2777211547 @default.
- W2321826012 hasConceptScore W2321826012C3020493868 @default.
- W2321826012 hasConceptScore W2321826012C41008148 @default.
- W2321826012 hasConceptScore W2321826012C51632099 @default.