Matches in SemOpenAlex for { <https://semopenalex.org/work/W2321840236> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2321840236 endingPage "70" @default.
- W2321840236 startingPage "63" @default.
- W2321840236 abstract "영상융합 기법은 고해상도 영상을 이용하여 저해상도 영상의 공간해상도를 증대시키는 방법이다. 본 논문에서는 EO-1 위성에 탑재된 ALI 센서와 Hyperion 센서로부터 취득된 고해상도 흑백영상, 저해상도 다중분광 영상 및 초분광 영상을 활용한 초분광 영상의 융합기법에 대한 연구를 수행하였다. 특히, 초분광 영상과 다중분광 영상의 특성을 고려하여 초분광 영상의 블록을 구성하여 ALI 및 Hyperion 영상에 적용하고, 이에 따른 영상융합 기법의 성능을 평가하고자 하였다. 실험결과, 고해상도 흑백영상만을 사용한 융합결과와 비교하여 저해상도 다중분광 영상을 활용한 블록기반의 융합기법이 공간해상도를 효율적으로 향상시킬 수 있음을 확인하였으며, 제안된 융합기법이 기존의 블록기반 융합기법과 비교하여 분광왜곡을 최소화시킬 수 있음을 확인하였다. 이를 통해, 향후 발사될 다양한 초분광 위성 및 항공기 초분광 센서의 활용을 증대시킬 수 있을 것으로 판단된다. An Image fusion, or Pansharpening is a methodology of increasing the spatial resolution of image with low-spatial resolution using high-spatial resolution images. In this paper, we have performed an image fusion of hyperspectral imagery by using panchromatic image with high-spatial resolution, multispectral and hyperspectral images with low-spatial resolution, which had been acquired by ALI and Hyperion of EO-1 satellite sensors. The study has been mainly focused on evaluating performance of fusion process following to the image fusion methodology of the block association, which had applied to ALI and Hyperion dataset by considering spectral characteristics between multispectral and hyperspectral images. The results from experiments have been identified that the proposed algorithm efficiently improved the spatial resolution and minimized spectral distortion comparing with results from a fusion of the only panchromatic and hyperspectral images and the existing block-based fusion method. Through the study in a proposed algorithm, we could concluded in that those applications of airborne hyperspectral sensors and various hyperspectral satellite sensors will be launched at future by enlarge its usages." @default.
- W2321840236 created "2016-06-24" @default.
- W2321840236 creator A5005671801 @default.
- W2321840236 creator A5062825877 @default.
- W2321840236 date "2015-02-28" @default.
- W2321840236 modified "2023-10-18" @default.
- W2321840236 title "Evaluation of Block-based Sharpening Algorithms for Fusion of Hyperion and ALI Imagery" @default.
- W2321840236 cites W1975116897 @default.
- W2321840236 cites W1990231296 @default.
- W2321840236 cites W1992468426 @default.
- W2321840236 cites W2001157145 @default.
- W2321840236 cites W2004453229 @default.
- W2321840236 cites W2121652279 @default.
- W2321840236 cites W778820989 @default.
- W2321840236 doi "https://doi.org/10.7848/ksgpc.2015.33.1.63" @default.
- W2321840236 hasPublicationYear "2015" @default.
- W2321840236 type Work @default.
- W2321840236 sameAs 2321840236 @default.
- W2321840236 citedByCount "1" @default.
- W2321840236 countsByYear W23218402362017 @default.
- W2321840236 crossrefType "journal-article" @default.
- W2321840236 hasAuthorship W2321840236A5005671801 @default.
- W2321840236 hasAuthorship W2321840236A5062825877 @default.
- W2321840236 hasBestOaLocation W23218402361 @default.
- W2321840236 hasConcept C107445234 @default.
- W2321840236 hasConcept C115961682 @default.
- W2321840236 hasConcept C127413603 @default.
- W2321840236 hasConcept C146978453 @default.
- W2321840236 hasConcept C154945302 @default.
- W2321840236 hasConcept C159078339 @default.
- W2321840236 hasConcept C173163844 @default.
- W2321840236 hasConcept C19269812 @default.
- W2321840236 hasConcept C205372480 @default.
- W2321840236 hasConcept C205649164 @default.
- W2321840236 hasConcept C2524010 @default.
- W2321840236 hasConcept C2777210771 @default.
- W2321840236 hasConcept C2781137444 @default.
- W2321840236 hasConcept C31972630 @default.
- W2321840236 hasConcept C33923547 @default.
- W2321840236 hasConcept C41008148 @default.
- W2321840236 hasConcept C62649853 @default.
- W2321840236 hasConcept C69744172 @default.
- W2321840236 hasConceptScore W2321840236C107445234 @default.
- W2321840236 hasConceptScore W2321840236C115961682 @default.
- W2321840236 hasConceptScore W2321840236C127413603 @default.
- W2321840236 hasConceptScore W2321840236C146978453 @default.
- W2321840236 hasConceptScore W2321840236C154945302 @default.
- W2321840236 hasConceptScore W2321840236C159078339 @default.
- W2321840236 hasConceptScore W2321840236C173163844 @default.
- W2321840236 hasConceptScore W2321840236C19269812 @default.
- W2321840236 hasConceptScore W2321840236C205372480 @default.
- W2321840236 hasConceptScore W2321840236C205649164 @default.
- W2321840236 hasConceptScore W2321840236C2524010 @default.
- W2321840236 hasConceptScore W2321840236C2777210771 @default.
- W2321840236 hasConceptScore W2321840236C2781137444 @default.
- W2321840236 hasConceptScore W2321840236C31972630 @default.
- W2321840236 hasConceptScore W2321840236C33923547 @default.
- W2321840236 hasConceptScore W2321840236C41008148 @default.
- W2321840236 hasConceptScore W2321840236C62649853 @default.
- W2321840236 hasConceptScore W2321840236C69744172 @default.
- W2321840236 hasIssue "1" @default.
- W2321840236 hasLocation W23218402361 @default.
- W2321840236 hasOpenAccess W2321840236 @default.
- W2321840236 hasPrimaryLocation W23218402361 @default.
- W2321840236 hasRelatedWork W2267317663 @default.
- W2321840236 hasRelatedWork W2292145567 @default.
- W2321840236 hasRelatedWork W2321840236 @default.
- W2321840236 hasRelatedWork W2375230202 @default.
- W2321840236 hasRelatedWork W2765357241 @default.
- W2321840236 hasRelatedWork W2766312395 @default.
- W2321840236 hasRelatedWork W3155638487 @default.
- W2321840236 hasRelatedWork W3160961055 @default.
- W2321840236 hasRelatedWork W3187789630 @default.
- W2321840236 hasRelatedWork W847427913 @default.
- W2321840236 hasVolume "33" @default.
- W2321840236 isParatext "false" @default.
- W2321840236 isRetracted "false" @default.
- W2321840236 magId "2321840236" @default.
- W2321840236 workType "article" @default.