Matches in SemOpenAlex for { <https://semopenalex.org/work/W2321868282> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2321868282 endingPage "407" @default.
- W2321868282 startingPage "397" @default.
- W2321868282 abstract "The gross heating value (GHV) is one of the most significant properties of biomass fuels in designing and operating any fuel processing systems. This study deals with a new method to calculate the GHV from the proximate analysis of different kinds of lignocellulosic fuels by using Levenberg–Marquardt trained artificial neural network (ANN) as an artificial intelligence method. Furthermore, a new nonlinear regression model was developed for this study. The published correlations were employed with the various biomasses to obtain a comparison with the ANN model and developed nonlinear correlation in this study. The results indicate that the artificial intelligence approach offers a high degree of correlation and its robustness and capability to compute GHV of any lignocellulosic fuels from its proximate analysis. Therefore, the proposed artificial intelligence is highly promising tool to use in designing and operating of any thermolysis process for lignocellulosic fuels." @default.
- W2321868282 created "2016-06-24" @default.
- W2321868282 creator A5044661006 @default.
- W2321868282 date "2017-06-01" @default.
- W2321868282 modified "2023-09-26" @default.
- W2321868282 title "An artificial intelligence approach to predict gross heating value of lignocellulosic fuels" @default.
- W2321868282 cites W1881634068 @default.
- W2321868282 cites W1967109682 @default.
- W2321868282 cites W1980311188 @default.
- W2321868282 cites W1986667872 @default.
- W2321868282 cites W1998907166 @default.
- W2321868282 cites W2000761731 @default.
- W2321868282 cites W2004847971 @default.
- W2321868282 cites W2019154940 @default.
- W2321868282 cites W2032237236 @default.
- W2321868282 cites W2033363853 @default.
- W2321868282 cites W2043065520 @default.
- W2321868282 cites W2047007942 @default.
- W2321868282 cites W2057982425 @default.
- W2321868282 cites W2064695941 @default.
- W2321868282 cites W2065888511 @default.
- W2321868282 cites W2080743482 @default.
- W2321868282 cites W2082081854 @default.
- W2321868282 cites W2083049772 @default.
- W2321868282 cites W2087404240 @default.
- W2321868282 cites W2090758660 @default.
- W2321868282 cites W2093800444 @default.
- W2321868282 cites W2094821752 @default.
- W2321868282 cites W639474776 @default.
- W2321868282 doi "https://doi.org/10.1016/j.joei.2016.04.003" @default.
- W2321868282 hasPublicationYear "2017" @default.
- W2321868282 type Work @default.
- W2321868282 sameAs 2321868282 @default.
- W2321868282 citedByCount "27" @default.
- W2321868282 countsByYear W23218682822018 @default.
- W2321868282 countsByYear W23218682822019 @default.
- W2321868282 countsByYear W23218682822020 @default.
- W2321868282 countsByYear W23218682822021 @default.
- W2321868282 countsByYear W23218682822022 @default.
- W2321868282 countsByYear W23218682822023 @default.
- W2321868282 crossrefType "journal-article" @default.
- W2321868282 hasAuthorship W2321868282A5044661006 @default.
- W2321868282 hasConcept C104317684 @default.
- W2321868282 hasConcept C115540264 @default.
- W2321868282 hasConcept C119857082 @default.
- W2321868282 hasConcept C127413603 @default.
- W2321868282 hasConcept C185592680 @default.
- W2321868282 hasConcept C21880701 @default.
- W2321868282 hasConcept C2778234585 @default.
- W2321868282 hasConcept C3019557281 @default.
- W2321868282 hasConcept C39432304 @default.
- W2321868282 hasConcept C41008148 @default.
- W2321868282 hasConcept C50644808 @default.
- W2321868282 hasConcept C53991642 @default.
- W2321868282 hasConcept C548081761 @default.
- W2321868282 hasConcept C55493867 @default.
- W2321868282 hasConcept C63479239 @default.
- W2321868282 hasConcept C6557445 @default.
- W2321868282 hasConcept C86803240 @default.
- W2321868282 hasConceptScore W2321868282C104317684 @default.
- W2321868282 hasConceptScore W2321868282C115540264 @default.
- W2321868282 hasConceptScore W2321868282C119857082 @default.
- W2321868282 hasConceptScore W2321868282C127413603 @default.
- W2321868282 hasConceptScore W2321868282C185592680 @default.
- W2321868282 hasConceptScore W2321868282C21880701 @default.
- W2321868282 hasConceptScore W2321868282C2778234585 @default.
- W2321868282 hasConceptScore W2321868282C3019557281 @default.
- W2321868282 hasConceptScore W2321868282C39432304 @default.
- W2321868282 hasConceptScore W2321868282C41008148 @default.
- W2321868282 hasConceptScore W2321868282C50644808 @default.
- W2321868282 hasConceptScore W2321868282C53991642 @default.
- W2321868282 hasConceptScore W2321868282C548081761 @default.
- W2321868282 hasConceptScore W2321868282C55493867 @default.
- W2321868282 hasConceptScore W2321868282C63479239 @default.
- W2321868282 hasConceptScore W2321868282C6557445 @default.
- W2321868282 hasConceptScore W2321868282C86803240 @default.
- W2321868282 hasIssue "3" @default.
- W2321868282 hasLocation W23218682821 @default.
- W2321868282 hasOpenAccess W2321868282 @default.
- W2321868282 hasPrimaryLocation W23218682821 @default.
- W2321868282 hasRelatedWork W2173238432 @default.
- W2321868282 hasRelatedWork W2343591858 @default.
- W2321868282 hasRelatedWork W2486541405 @default.
- W2321868282 hasRelatedWork W2621200062 @default.
- W2321868282 hasRelatedWork W2738585510 @default.
- W2321868282 hasRelatedWork W2782968149 @default.
- W2321868282 hasRelatedWork W2952319034 @default.
- W2321868282 hasRelatedWork W3034235743 @default.
- W2321868282 hasRelatedWork W3206746445 @default.
- W2321868282 hasRelatedWork W4288942173 @default.
- W2321868282 hasVolume "90" @default.
- W2321868282 isParatext "false" @default.
- W2321868282 isRetracted "false" @default.
- W2321868282 magId "2321868282" @default.
- W2321868282 workType "article" @default.