Matches in SemOpenAlex for { <https://semopenalex.org/work/W2321879621> ?p ?o ?g. }
- W2321879621 endingPage "337" @default.
- W2321879621 startingPage "325" @default.
- W2321879621 abstract "Droplet interface bilayers (DIBs) serve as a convenient platform to study interactions between synthetic lipid membranes and proteins. However, a majority of DIBs have been assembled using a single lipid type, diphytanoylphosphatidylcholine (DPhPC). The work described herein establishes a new method to assemble DIBs using total lipid extract from Escherichia coli (eTLE); it is found that incubating oil-submerged aqueous droplets containing eTLE liposomes at a temperature above the gel–fluid phase transition temperature (Tg) promotes monolayer self-assembly that does not occur below Tg. Once monolayers are properly assembled via heating, droplets can be directly connected or cooled below Tg and then connected to initiate bilayer formation. This outcome contrasts immediate droplet coalescence observed upon contact between nonheated eTLE-infused droplets. Specific capacitance measurements confirm that the interface between droplets containing eTLE lipids is a lipid bilayer with thickness of 29.6 Å at 25 °C in hexadecane. We observe that bilayers formed from eTLE or DPhPC survive cooling and heating between 25 and 50 °C and demonstrate gigaohm (GΩ) membrane resistances at all temperatures tested. Additionally, we study the insertion of alamethicin peptides into both eTLE and DPhPC membranes to understand how lipid composition, temperature, and membrane phase influence ion channel formation. Like in DPhPC bilayers, alamethicin peptides in eTLE exhibit discrete, voltage-dependent gating characterized by multiple open channel conductance levels, though at significantly lower applied voltages. Cyclic voltammetry measurements of macroscopic channel currents confirm that the voltage-dependent conductance of alamethicin channels in eTLE bilayers occurs at lower voltages than in DPhPC bilayers at equivalent peptide concentrations. This result suggests that eTLE membranes, via composition, fluidity, or the presence of subdomains, offer an environment that enhances alamethicin insertion. For both membrane compositions, increasing temperature reduces the lifetimes of single channel gating events and increases the voltage required to cause an exponential increase in channel current. However, the fact that alamethicin insertion in eTLE exhibits significantly greater sensitivity to temperature changes through its Tg suggests that membrane phase plays an important role in channel formation. These effects are much less severe in DPhPC, where heating from 25 to 50 °C does not induce a phase change. The described technique for heating-assisted monolayer formation permits the use of other high transition temperature lipids in aqueous droplets for DIB formation, thereby increasing the types of lipids that can be considered for assembling model membranes." @default.
- W2321879621 created "2016-06-24" @default.
- W2321879621 creator A5021852362 @default.
- W2321879621 creator A5053153638 @default.
- W2321879621 date "2014-12-31" @default.
- W2321879621 modified "2023-10-14" @default.
- W2321879621 title "Heating-Enabled Formation of Droplet Interface Bilayers Using <i>Escherichia coli</i> Total Lipid Extract" @default.
- W2321879621 cites W1966108373 @default.
- W2321879621 cites W1966740725 @default.
- W2321879621 cites W1966969615 @default.
- W2321879621 cites W1968119991 @default.
- W2321879621 cites W1970667571 @default.
- W2321879621 cites W1973461864 @default.
- W2321879621 cites W1978195377 @default.
- W2321879621 cites W1979682060 @default.
- W2321879621 cites W1986331992 @default.
- W2321879621 cites W1989209344 @default.
- W2321879621 cites W1990612778 @default.
- W2321879621 cites W1991055022 @default.
- W2321879621 cites W1994958436 @default.
- W2321879621 cites W1996104457 @default.
- W2321879621 cites W1998269914 @default.
- W2321879621 cites W2001541658 @default.
- W2321879621 cites W2002130924 @default.
- W2321879621 cites W2003194288 @default.
- W2321879621 cites W2016514566 @default.
- W2321879621 cites W2020116436 @default.
- W2321879621 cites W2025938842 @default.
- W2321879621 cites W2026775037 @default.
- W2321879621 cites W2029678840 @default.
- W2321879621 cites W2031408917 @default.
- W2321879621 cites W2032062499 @default.
- W2321879621 cites W2033913030 @default.
- W2321879621 cites W2041967279 @default.
- W2321879621 cites W2042024081 @default.
- W2321879621 cites W2047055618 @default.
- W2321879621 cites W2047491625 @default.
- W2321879621 cites W2048740582 @default.
- W2321879621 cites W2050215073 @default.
- W2321879621 cites W2050723389 @default.
- W2321879621 cites W2055478279 @default.
- W2321879621 cites W2057653477 @default.
- W2321879621 cites W2059206785 @default.
- W2321879621 cites W2060750851 @default.
- W2321879621 cites W2067260384 @default.
- W2321879621 cites W2077272189 @default.
- W2321879621 cites W2078165893 @default.
- W2321879621 cites W2080876886 @default.
- W2321879621 cites W2081985905 @default.
- W2321879621 cites W2095122328 @default.
- W2321879621 cites W2097802783 @default.
- W2321879621 cites W2099421924 @default.
- W2321879621 cites W2100717815 @default.
- W2321879621 cites W2109534784 @default.
- W2321879621 cites W2130947724 @default.
- W2321879621 cites W2131895086 @default.
- W2321879621 cites W2140820106 @default.
- W2321879621 cites W2143739243 @default.
- W2321879621 cites W2155653247 @default.
- W2321879621 cites W2164233810 @default.
- W2321879621 cites W2313730457 @default.
- W2321879621 cites W2314945655 @default.
- W2321879621 cites W2321849893 @default.
- W2321879621 cites W2333201285 @default.
- W2321879621 cites W2334065707 @default.
- W2321879621 doi "https://doi.org/10.1021/la503471m" @default.
- W2321879621 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25514167" @default.
- W2321879621 hasPublicationYear "2014" @default.
- W2321879621 type Work @default.
- W2321879621 sameAs 2321879621 @default.
- W2321879621 citedByCount "32" @default.
- W2321879621 countsByYear W23218796212015 @default.
- W2321879621 countsByYear W23218796212016 @default.
- W2321879621 countsByYear W23218796212017 @default.
- W2321879621 countsByYear W23218796212018 @default.
- W2321879621 countsByYear W23218796212019 @default.
- W2321879621 countsByYear W23218796212020 @default.
- W2321879621 countsByYear W23218796212021 @default.
- W2321879621 countsByYear W23218796212022 @default.
- W2321879621 countsByYear W23218796212023 @default.
- W2321879621 crossrefType "journal-article" @default.
- W2321879621 hasAuthorship W2321879621A5021852362 @default.
- W2321879621 hasAuthorship W2321879621A5053153638 @default.
- W2321879621 hasConcept C113196181 @default.
- W2321879621 hasConcept C114614502 @default.
- W2321879621 hasConcept C121932024 @default.
- W2321879621 hasConcept C127413603 @default.
- W2321879621 hasConcept C178790620 @default.
- W2321879621 hasConcept C185592680 @default.
- W2321879621 hasConcept C192157962 @default.
- W2321879621 hasConcept C2780768339 @default.
- W2321879621 hasConcept C2780985075 @default.
- W2321879621 hasConcept C33923547 @default.
- W2321879621 hasConcept C39944091 @default.
- W2321879621 hasConcept C41625074 @default.
- W2321879621 hasConcept C42360764 @default.
- W2321879621 hasConcept C43617362 @default.
- W2321879621 hasConcept C44280652 @default.