Matches in SemOpenAlex for { <https://semopenalex.org/work/W2321894131> ?p ?o ?g. }
- W2321894131 endingPage "307" @default.
- W2321894131 startingPage "298" @default.
- W2321894131 abstract "Transition metal compounds are well known as activators of small molecules, and they serve as efficient catalysts for a variety of homogeneous and heterogeneous transformations. In contrast, there is a general feeling that main group compounds cannot act as efficient catalysts because of their inability to activate small molecules. Traditionally, the activation of small molecules is considered one of the key steps during a catalytic cycle with transition metals. As a consequence, researchers have long neglected the full range of possibilities in harnessing main group elements for the design of efficient catalysts. Recent developments, however, have made it possible to synthesize main group compounds with low-valent elements capable of activating small molecules. In particular, the judicious use of sterically appropriate ligands has been successful in preparing and stabilizing a variety of Group 14 hydrides with low-valent elements. In this Account, we discuss recent advances in the synthesis of Group 14 hydrides with low-valent elements and assess their potential as small-molecule activators. Group 14, which comprises the nonmetal C, the semimetals Si and Ge, and the metals Sn and Pb, was for years a source of hydrides with the Group 14 element almost exclusively in tetravalent form. Synthetic difficulties and the low stability of Group 14 hydrides in lower oxidation states were difficult to overcome. But in 2000, a divalent Sn(II) hydride was prepared as a stable compound through the incorporation of sterically encumbered aromatic ligands. More recently, the stabilization of GeH(2) and SnH(2) complexes using an N-heterocyclic carbene (NHC) as a donor and BH(3) or a metal carbonyl complex as an acceptor was reported. A similar strategy was also employed to synthesize the Si(II) hydride. This class of hydrides may be considered coordinatively saturated, with the lone pair of electrons on the Group 14 elements taking part in coordination. We discuss the large-scale synthesis of hydrides of the form LMH (where M is Ge or Sn, L is CH(N(Ar)(CMe))(2), and Ar is 2,6-iPr(2)C(6)H(3)), which has made it possible to test their reactivity in the activation of small molecules. Unlike the tetravalent Group 14 hydrides, the Ge(II) and Sn(II) hydrides were found to be able to activate a number of small molecules in the absence of any externally added catalyst. For example, the Ge(II) hydride and Sn(II) hydride can activate CO(2), and the reaction results in the formation of Ge(II) and Sn(II) esters of formic acid. This product represents a prototype of a new class of compounds of Group 14 elements. Moreover, we examined the activation of carbonyl compounds, alkynes, diazo and azo compounds, azides, and compounds containing the C═N bond. These Group 14 hydrides with low-valent elements are shown to be able to activate a number of important small molecules with C≡C, C═O, N═N, and C═N bonds. The activation of small molecules is an important step forward in the realization of main group catalyst development. Although it is not yet customary to assay the potential of newly synthesized main group compounds for small-molecule activation, our results offer good reason to do so." @default.
- W2321894131 created "2016-06-24" @default.
- W2321894131 creator A5071640196 @default.
- W2321894131 creator A5081316842 @default.
- W2321894131 date "2011-09-01" @default.
- W2321894131 modified "2023-10-16" @default.
- W2321894131 title "Group 14 Hydrides with Low Valent Elements for Activation of Small Molecules" @default.
- W2321894131 cites W1641295153 @default.
- W2321894131 cites W1964767533 @default.
- W2321894131 cites W1969111261 @default.
- W2321894131 cites W1973065393 @default.
- W2321894131 cites W1977837855 @default.
- W2321894131 cites W1982574787 @default.
- W2321894131 cites W1983342971 @default.
- W2321894131 cites W1985565100 @default.
- W2321894131 cites W1985841485 @default.
- W2321894131 cites W1988099159 @default.
- W2321894131 cites W1996051496 @default.
- W2321894131 cites W2002115308 @default.
- W2321894131 cites W2003782942 @default.
- W2321894131 cites W2007009327 @default.
- W2321894131 cites W2009642121 @default.
- W2321894131 cites W2018324300 @default.
- W2321894131 cites W2028777339 @default.
- W2321894131 cites W2030179075 @default.
- W2321894131 cites W2032656075 @default.
- W2321894131 cites W2037891311 @default.
- W2321894131 cites W2038880537 @default.
- W2321894131 cites W2040937605 @default.
- W2321894131 cites W2041656873 @default.
- W2321894131 cites W2046305422 @default.
- W2321894131 cites W2051784722 @default.
- W2321894131 cites W2055033687 @default.
- W2321894131 cites W2055206190 @default.
- W2321894131 cites W2057641806 @default.
- W2321894131 cites W2060013781 @default.
- W2321894131 cites W2060732591 @default.
- W2321894131 cites W2061665982 @default.
- W2321894131 cites W2064563332 @default.
- W2321894131 cites W2065649283 @default.
- W2321894131 cites W2066604660 @default.
- W2321894131 cites W2068778947 @default.
- W2321894131 cites W2068973090 @default.
- W2321894131 cites W2074146554 @default.
- W2321894131 cites W2079771371 @default.
- W2321894131 cites W2090056223 @default.
- W2321894131 cites W2103051976 @default.
- W2321894131 cites W2105597435 @default.
- W2321894131 cites W2116950457 @default.
- W2321894131 cites W2118593628 @default.
- W2321894131 cites W2131582948 @default.
- W2321894131 cites W2133292697 @default.
- W2321894131 cites W2139817051 @default.
- W2321894131 cites W2168439556 @default.
- W2321894131 cites W2170775699 @default.
- W2321894131 cites W2171528001 @default.
- W2321894131 cites W2317416875 @default.
- W2321894131 cites W2322900839 @default.
- W2321894131 cites W2325016210 @default.
- W2321894131 cites W2325601647 @default.
- W2321894131 cites W2332801039 @default.
- W2321894131 cites W2332950207 @default.
- W2321894131 cites W2949627759 @default.
- W2321894131 cites W2949720378 @default.
- W2321894131 cites W2950062601 @default.
- W2321894131 cites W2950797181 @default.
- W2321894131 cites W2952112549 @default.
- W2321894131 cites W2952918780 @default.
- W2321894131 cites W2952961975 @default.
- W2321894131 cites W3005504426 @default.
- W2321894131 cites W3024709322 @default.
- W2321894131 cites W4211193477 @default.
- W2321894131 cites W4214676526 @default.
- W2321894131 cites W4231794305 @default.
- W2321894131 cites W4239457065 @default.
- W2321894131 cites W4240447617 @default.
- W2321894131 cites W4242062795 @default.
- W2321894131 cites W4244066838 @default.
- W2321894131 cites W4244109077 @default.
- W2321894131 cites W4244969957 @default.
- W2321894131 cites W4250707935 @default.
- W2321894131 cites W4256596087 @default.
- W2321894131 doi "https://doi.org/10.1021/ar2001759" @default.
- W2321894131 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21882810" @default.
- W2321894131 hasPublicationYear "2011" @default.
- W2321894131 type Work @default.
- W2321894131 sameAs 2321894131 @default.
- W2321894131 citedByCount "188" @default.
- W2321894131 countsByYear W23218941312012 @default.
- W2321894131 countsByYear W23218941312013 @default.
- W2321894131 countsByYear W23218941312014 @default.
- W2321894131 countsByYear W23218941312015 @default.
- W2321894131 countsByYear W23218941312016 @default.
- W2321894131 countsByYear W23218941312017 @default.
- W2321894131 countsByYear W23218941312018 @default.
- W2321894131 countsByYear W23218941312019 @default.
- W2321894131 countsByYear W23218941312020 @default.
- W2321894131 countsByYear W23218941312021 @default.