Matches in SemOpenAlex for { <https://semopenalex.org/work/W2322082719> ?p ?o ?g. }
- W2322082719 endingPage "3051" @default.
- W2322082719 startingPage "3045" @default.
- W2322082719 abstract "Understanding and unlocking the potential of semiconductor nanocrystals (NCs) is important for future applications ranging from biomedical imaging contrast agents to the next generation of solar cells and LEDs. Silicon NCs (Si NCs) have key advantages compared with other semiconductor NCs due to silicon's high natural abundance, low toxicity and strong biocompatibility, and unique size, and surface dependent optical properties. In this Account, we review and discuss the synthesis, surface modification, purification, optical properties, and applications of Si NCs. The synthetic methods used to make Si NCs have improved considerably in the last 5-10 years; highly monodisperse Si NCs can now be produced on the near gram scale. Scaled-up syntheses have allowed scientists to drive further toward the commercial utilization of Si NCs. The synthesis of doped Si NCs, through addition of a simple elemental precursor to a reaction mixture or by the production of a single source precursor, has shown great promise. Doped Si NCs have demonstrated unique or enhanced properties compared with pure Si NCs, for example, magnetism due to the presence of magnetic metals like Fe and Mn. Surface reactions have reached a new level of sophistication where organic (epoxidation and diol formation) and click (thiol based) chemical reactions can be carried out on attached surface molecules. This has led to a wide range of biocompatible functional groups as well as a degree of emission tuneability. The purification of Si NCs has been improved through the use of size separation columns and size selective precipitation. These purification approaches have yielded highly monodisperse and pure Si NCs previously unachieved. This has allowed scientists to study the size and surface dependent properties and toxicity and enabled the use of Si NCs in biomedical applications. The optical properties of Si NCs are complex. Using a combination of characterization techniques, researchers have explored the relation between the optical properties and the size, surface functionalization, and preparation method. This work has led to a greater fundamental understanding of the unique optical properties of Si NCs. Si NCs are being studied for a wide range of important applications, including LEDS with tunable electroluminescence ranging from NIR to yellow, the encapsulation of Si NCs within micelles terminated with proteins to allow targeted in vivo imaging of cells, Si NC-polymer hybrid solar cells, and the use of Si NCs in battery anodes with high theoretical capacity and good charge retention." @default.
- W2322082719 created "2016-06-24" @default.
- W2322082719 creator A5009825049 @default.
- W2322082719 creator A5058696839 @default.
- W2322082719 date "2014-09-25" @default.
- W2322082719 modified "2023-10-18" @default.
- W2322082719 title "Solution Synthesis, Optical Properties, and Bioimaging Applications of Silicon Nanocrystals" @default.
- W2322082719 cites W1972067617 @default.
- W2322082719 cites W1973581409 @default.
- W2322082719 cites W1974326060 @default.
- W2322082719 cites W1976224727 @default.
- W2322082719 cites W1980431366 @default.
- W2322082719 cites W1980475868 @default.
- W2322082719 cites W1982789299 @default.
- W2322082719 cites W1984360094 @default.
- W2322082719 cites W1985543598 @default.
- W2322082719 cites W1986951817 @default.
- W2322082719 cites W1987223576 @default.
- W2322082719 cites W1988209615 @default.
- W2322082719 cites W1990788537 @default.
- W2322082719 cites W1998263129 @default.
- W2322082719 cites W2007091994 @default.
- W2322082719 cites W2009242206 @default.
- W2322082719 cites W2017354752 @default.
- W2322082719 cites W2017633570 @default.
- W2322082719 cites W2031305523 @default.
- W2322082719 cites W2034776424 @default.
- W2322082719 cites W2043530891 @default.
- W2322082719 cites W2047409069 @default.
- W2322082719 cites W2049996530 @default.
- W2322082719 cites W2050539207 @default.
- W2322082719 cites W2051314302 @default.
- W2322082719 cites W2052096100 @default.
- W2322082719 cites W2055937892 @default.
- W2322082719 cites W2057221328 @default.
- W2322082719 cites W2061740616 @default.
- W2322082719 cites W2064924111 @default.
- W2322082719 cites W2064928735 @default.
- W2322082719 cites W2065191230 @default.
- W2322082719 cites W2065572677 @default.
- W2322082719 cites W2066324020 @default.
- W2322082719 cites W2066714320 @default.
- W2322082719 cites W2066959901 @default.
- W2322082719 cites W2082454728 @default.
- W2322082719 cites W2088157474 @default.
- W2322082719 cites W2113095835 @default.
- W2322082719 cites W2120131660 @default.
- W2322082719 cites W2136746042 @default.
- W2322082719 cites W2145929043 @default.
- W2322082719 cites W2146275432 @default.
- W2322082719 cites W2156143132 @default.
- W2322082719 cites W2159950460 @default.
- W2322082719 cites W2163527449 @default.
- W2322082719 cites W2166956645 @default.
- W2322082719 cites W2314476976 @default.
- W2322082719 cites W2315529665 @default.
- W2322082719 cites W2317482110 @default.
- W2322082719 cites W2328380189 @default.
- W2322082719 cites W2328617922 @default.
- W2322082719 cites W2328871143 @default.
- W2322082719 cites W2331119574 @default.
- W2322082719 cites W4243204322 @default.
- W2322082719 doi "https://doi.org/10.1021/ar500215v" @default.
- W2322082719 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25252604" @default.
- W2322082719 hasPublicationYear "2014" @default.
- W2322082719 type Work @default.
- W2322082719 sameAs 2322082719 @default.
- W2322082719 citedByCount "181" @default.
- W2322082719 countsByYear W23220827192014 @default.
- W2322082719 countsByYear W23220827192015 @default.
- W2322082719 countsByYear W23220827192016 @default.
- W2322082719 countsByYear W23220827192017 @default.
- W2322082719 countsByYear W23220827192018 @default.
- W2322082719 countsByYear W23220827192019 @default.
- W2322082719 countsByYear W23220827192020 @default.
- W2322082719 countsByYear W23220827192021 @default.
- W2322082719 countsByYear W23220827192022 @default.
- W2322082719 countsByYear W23220827192023 @default.
- W2322082719 crossrefType "journal-article" @default.
- W2322082719 hasAuthorship W2322082719A5009825049 @default.
- W2322082719 hasAuthorship W2322082719A5058696839 @default.
- W2322082719 hasConcept C11432220 @default.
- W2322082719 hasConcept C115537861 @default.
- W2322082719 hasConcept C121332964 @default.
- W2322082719 hasConcept C127413603 @default.
- W2322082719 hasConcept C148869448 @default.
- W2322082719 hasConcept C171250308 @default.
- W2322082719 hasConcept C175854130 @default.
- W2322082719 hasConcept C188027245 @default.
- W2322082719 hasConcept C192562407 @default.
- W2322082719 hasConcept C197162081 @default.
- W2322082719 hasConcept C42360764 @default.
- W2322082719 hasConcept C49040817 @default.
- W2322082719 hasConcept C544956773 @default.
- W2322082719 hasConcept C62520636 @default.
- W2322082719 hasConceptScore W2322082719C11432220 @default.
- W2322082719 hasConceptScore W2322082719C115537861 @default.
- W2322082719 hasConceptScore W2322082719C121332964 @default.