Matches in SemOpenAlex for { <https://semopenalex.org/work/W2322186907> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2322186907 endingPage "168" @default.
- W2322186907 startingPage "153" @default.
- W2322186907 abstract "Feed-forward artiflcial neural networks (ANNs) have been applied to the diagnosis of mixed-mode electronic circuit. In order to tackle the circuit com- plexity and to reduce the number of test points, hierarchical approach to the diag- nosis generation was implemented with two levels of decision: the system level and the circuit level. For every level, using the simulation-before-test (SBT) approach, fault dictionary was created flrst, containing data relating to the fault code and the circuit response for a given input signal. ANNs were used to model the fault dictio- naries. During the learning phase, the ANNs were considered as an approximation algorithm to capture the mapping enclosed within the fault dictionary. Later on, in the diagnostic phase, the ANNs were used as an algorithm for mapping the measured data into fault code, which is equivalent to searching the fault dictio- nary performed by some other diagnostic procedures. At the topmost level, the fault dictionary was split into parts simplifying the implementation of the concept. A voting system was created at the topmost level in order to distinguish which ANN's output is to be accepted as the flnal diagnostic statement. The approach was tested on an example of an analog-to-digital converter, and only one test point was used, i.e. the digital output. Full diversity of faults was considered in both digital (stuck-at and delay faults) and analog (parametric and catastrophic faults) parts of the diagnosed system. Special attention was paid to the faults related to the A/D and D/A interfaces within the circuit." @default.
- W2322186907 created "2016-06-24" @default.
- W2322186907 creator A5025985650 @default.
- W2322186907 creator A5058461236 @default.
- W2322186907 creator A5082137961 @default.
- W2322186907 date "2011-01-01" @default.
- W2322186907 modified "2023-10-17" @default.
- W2322186907 title "HIERARCHICAL APPROACH TO DIAGNOSIS OF MIXED-MODE CIRCUITS USING ARTIFICIAL NEURAL NETWORKS" @default.
- W2322186907 cites W1533618852 @default.
- W2322186907 cites W1952139116 @default.
- W2322186907 cites W1966190965 @default.
- W2322186907 cites W1977775755 @default.
- W2322186907 cites W1980971625 @default.
- W2322186907 cites W1982029046 @default.
- W2322186907 cites W1984414914 @default.
- W2322186907 cites W2030911773 @default.
- W2322186907 cites W2062234467 @default.
- W2322186907 cites W2088576840 @default.
- W2322186907 cites W2101550795 @default.
- W2322186907 cites W2124965808 @default.
- W2322186907 cites W2125049119 @default.
- W2322186907 cites W2150469398 @default.
- W2322186907 cites W2152269573 @default.
- W2322186907 cites W2155440716 @default.
- W2322186907 cites W2159940620 @default.
- W2322186907 cites W2163748821 @default.
- W2322186907 cites W2165758113 @default.
- W2322186907 doi "https://doi.org/10.14311/nnw.2011.21.010" @default.
- W2322186907 hasPublicationYear "2011" @default.
- W2322186907 type Work @default.
- W2322186907 sameAs 2322186907 @default.
- W2322186907 citedByCount "4" @default.
- W2322186907 countsByYear W23221869072013 @default.
- W2322186907 countsByYear W23221869072014 @default.
- W2322186907 countsByYear W23221869072022 @default.
- W2322186907 crossrefType "journal-article" @default.
- W2322186907 hasAuthorship W2322186907A5025985650 @default.
- W2322186907 hasAuthorship W2322186907A5058461236 @default.
- W2322186907 hasAuthorship W2322186907A5082137961 @default.
- W2322186907 hasBestOaLocation W23221869071 @default.
- W2322186907 hasConcept C111919701 @default.
- W2322186907 hasConcept C118403218 @default.
- W2322186907 hasConcept C119599485 @default.
- W2322186907 hasConcept C119857082 @default.
- W2322186907 hasConcept C127413603 @default.
- W2322186907 hasConcept C134146338 @default.
- W2322186907 hasConcept C154945302 @default.
- W2322186907 hasConcept C159985019 @default.
- W2322186907 hasConcept C192562407 @default.
- W2322186907 hasConcept C2986550218 @default.
- W2322186907 hasConcept C41008148 @default.
- W2322186907 hasConcept C48677424 @default.
- W2322186907 hasConcept C50644808 @default.
- W2322186907 hasConceptScore W2322186907C111919701 @default.
- W2322186907 hasConceptScore W2322186907C118403218 @default.
- W2322186907 hasConceptScore W2322186907C119599485 @default.
- W2322186907 hasConceptScore W2322186907C119857082 @default.
- W2322186907 hasConceptScore W2322186907C127413603 @default.
- W2322186907 hasConceptScore W2322186907C134146338 @default.
- W2322186907 hasConceptScore W2322186907C154945302 @default.
- W2322186907 hasConceptScore W2322186907C159985019 @default.
- W2322186907 hasConceptScore W2322186907C192562407 @default.
- W2322186907 hasConceptScore W2322186907C2986550218 @default.
- W2322186907 hasConceptScore W2322186907C41008148 @default.
- W2322186907 hasConceptScore W2322186907C48677424 @default.
- W2322186907 hasConceptScore W2322186907C50644808 @default.
- W2322186907 hasIssue "2" @default.
- W2322186907 hasLocation W23221869071 @default.
- W2322186907 hasLocation W23221869072 @default.
- W2322186907 hasOpenAccess W2322186907 @default.
- W2322186907 hasPrimaryLocation W23221869071 @default.
- W2322186907 hasRelatedWork W1928442955 @default.
- W2322186907 hasRelatedWork W2353437773 @default.
- W2322186907 hasRelatedWork W2373714749 @default.
- W2322186907 hasRelatedWork W2386387936 @default.
- W2322186907 hasRelatedWork W2527447325 @default.
- W2322186907 hasRelatedWork W3001020386 @default.
- W2322186907 hasRelatedWork W3107474891 @default.
- W2322186907 hasRelatedWork W4362499384 @default.
- W2322186907 hasRelatedWork W644753246 @default.
- W2322186907 hasRelatedWork W1629725936 @default.
- W2322186907 hasVolume "21" @default.
- W2322186907 isParatext "false" @default.
- W2322186907 isRetracted "false" @default.
- W2322186907 magId "2322186907" @default.
- W2322186907 workType "article" @default.