Matches in SemOpenAlex for { <https://semopenalex.org/work/W2322362018> ?p ?o ?g. }
- W2322362018 endingPage "260" @default.
- W2322362018 startingPage "251" @default.
- W2322362018 abstract "Efficient solar energy conversion has been vigorously pursued since the 1970s, but its large-scale implementation hinges on the availability of high-efficiency modules. For maximum efficiency, it is important to absorb most of the incoming radiation, which necessitates both efficient photoexcitation and minimal electron-hole recombination. To date, researchers have primarily focused on the latter difficulty: finding a strategy to effectively separate photoinduced electrons and holes. Very few reports have been devoted to broadband sunlight absorption and photoexcitation. However, the currently available photovoltaic cells, such as amorphous silicon, and even single-crystal silicon and sensitized solar cells, cannot respond to the wide range of the solar spectrum. The photoelectric conversion characteristics of solar cells generally decrease in the infrared wavelength range. Thus, the fraction of the solar spectrum absorbed is relatively poor. In addition, the large mismatch between the diffraction limit of light and the absorption cross-section makes the probability of interactions between photons and cell materials quite low, which greatly limits photoexcitation efficiency. Therefore, there is a pressing need for research aimed at finding conditions that lead to highly efficient photoexcitation over a wide spectrum of sunlight, particularly in the visible to near-infrared wavelengths. As characterized in the emerging field of plasmonics, metallic nanostructures are endowed with optical antenna effects. These plasmonic antenna effects provide a promising platform for artificially sidestepping the diffraction limit of light and strongly enhancing absorption cross-sections. Moreover, they can efficiently excite photochemical reactions between photons and molecules close to an optical antenna through the local field enhancement. This technology has the potential to induce highly efficient photoexcitation between photons and molecules over a wide spectrum of sunlight, from visible to near-infrared wavelengths. In this Account, we describe our recent work in using metallic nanostructures to assist photochemical reactions for augmenting photoexcitation efficiency. These studies investigate the optical antenna effects of coupled plasmonic gold nanoblocks, which were fabricated with electron-beam lithography and a lift-off technique to afford high resolution and nanometric accuracy. The two-photon photoluminescence of gold and the resulting nonlinear photopolymerization on gold nanoblocks substantiate the existence of enhanced optical field domains. Local two-photon photochemical reactions due to weak incoherent light sources were identified. The optical antenna effects support the unprecedented realization of (i) direct photocarrier injection from the gold nanorods into TiO(2) and (ii) efficient and stable photocurrent generation in the absence of electron donors from visible (450 nm) to near-infrared (1300 nm) wavelengths." @default.
- W2322362018 created "2016-06-24" @default.
- W2322362018 creator A5007232529 @default.
- W2322362018 creator A5029524889 @default.
- W2322362018 creator A5068783320 @default.
- W2322362018 date "2011-03-07" @default.
- W2322362018 modified "2023-10-12" @default.
- W2322362018 title "Plasmonic Antenna Effects on Photochemical Reactions" @default.
- W2322362018 cites W1967581843 @default.
- W2322362018 cites W1974600865 @default.
- W2322362018 cites W1979884986 @default.
- W2322362018 cites W1984143159 @default.
- W2322362018 cites W1985520047 @default.
- W2322362018 cites W1986927722 @default.
- W2322362018 cites W1987880468 @default.
- W2322362018 cites W1989233766 @default.
- W2322362018 cites W2006953184 @default.
- W2322362018 cites W2010467127 @default.
- W2322362018 cites W2020093054 @default.
- W2322362018 cites W2020159253 @default.
- W2322362018 cites W2020307298 @default.
- W2322362018 cites W2025864484 @default.
- W2322362018 cites W2025864704 @default.
- W2322362018 cites W2029931302 @default.
- W2322362018 cites W2037541777 @default.
- W2322362018 cites W2038164948 @default.
- W2322362018 cites W2042212175 @default.
- W2322362018 cites W2044538752 @default.
- W2322362018 cites W2053113200 @default.
- W2322362018 cites W2053375261 @default.
- W2322362018 cites W2061995887 @default.
- W2322362018 cites W2064665825 @default.
- W2322362018 cites W2065582581 @default.
- W2322362018 cites W2067641595 @default.
- W2322362018 cites W2073644100 @default.
- W2322362018 cites W2075119375 @default.
- W2322362018 cites W2076079144 @default.
- W2322362018 cites W2080541737 @default.
- W2322362018 cites W2091017669 @default.
- W2322362018 cites W2091723156 @default.
- W2322362018 cites W2099651741 @default.
- W2322362018 cites W2107163767 @default.
- W2322362018 cites W2137541520 @default.
- W2322362018 cites W2139516501 @default.
- W2322362018 cites W2141346119 @default.
- W2322362018 cites W2141679678 @default.
- W2322362018 cites W2141804318 @default.
- W2322362018 cites W2144385771 @default.
- W2322362018 cites W2151175819 @default.
- W2322362018 cites W2159212713 @default.
- W2322362018 cites W2165498076 @default.
- W2322362018 cites W4241456496 @default.
- W2322362018 doi "https://doi.org/10.1021/ar100117w" @default.
- W2322362018 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21381706" @default.
- W2322362018 hasPublicationYear "2011" @default.
- W2322362018 type Work @default.
- W2322362018 sameAs 2322362018 @default.
- W2322362018 citedByCount "91" @default.
- W2322362018 countsByYear W23223620182012 @default.
- W2322362018 countsByYear W23223620182013 @default.
- W2322362018 countsByYear W23223620182014 @default.
- W2322362018 countsByYear W23223620182015 @default.
- W2322362018 countsByYear W23223620182016 @default.
- W2322362018 countsByYear W23223620182017 @default.
- W2322362018 countsByYear W23223620182018 @default.
- W2322362018 countsByYear W23223620182019 @default.
- W2322362018 countsByYear W23223620182020 @default.
- W2322362018 countsByYear W23223620182021 @default.
- W2322362018 countsByYear W23223620182022 @default.
- W2322362018 countsByYear W23223620182023 @default.
- W2322362018 crossrefType "journal-article" @default.
- W2322362018 hasAuthorship W2322362018A5007232529 @default.
- W2322362018 hasAuthorship W2322362018A5029524889 @default.
- W2322362018 hasAuthorship W2322362018A5068783320 @default.
- W2322362018 hasConcept C110879396 @default.
- W2322362018 hasConcept C120665830 @default.
- W2322362018 hasConcept C121332964 @default.
- W2322362018 hasConcept C125287762 @default.
- W2322362018 hasConcept C155220765 @default.
- W2322362018 hasConcept C159317903 @default.
- W2322362018 hasConcept C181500209 @default.
- W2322362018 hasConcept C184779094 @default.
- W2322362018 hasConcept C18903297 @default.
- W2322362018 hasConcept C192562407 @default.
- W2322362018 hasConcept C41291067 @default.
- W2322362018 hasConcept C49040817 @default.
- W2322362018 hasConcept C542589376 @default.
- W2322362018 hasConcept C86803240 @default.
- W2322362018 hasConceptScore W2322362018C110879396 @default.
- W2322362018 hasConceptScore W2322362018C120665830 @default.
- W2322362018 hasConceptScore W2322362018C121332964 @default.
- W2322362018 hasConceptScore W2322362018C125287762 @default.
- W2322362018 hasConceptScore W2322362018C155220765 @default.
- W2322362018 hasConceptScore W2322362018C159317903 @default.
- W2322362018 hasConceptScore W2322362018C181500209 @default.
- W2322362018 hasConceptScore W2322362018C184779094 @default.
- W2322362018 hasConceptScore W2322362018C18903297 @default.
- W2322362018 hasConceptScore W2322362018C192562407 @default.