Matches in SemOpenAlex for { <https://semopenalex.org/work/W2322439409> ?p ?o ?g. }
- W2322439409 endingPage "325" @default.
- W2322439409 startingPage "315" @default.
- W2322439409 abstract "Phenolic toxins stimulate oxidative stress and generate C-linked adducts at the C8-site of 2'-deoxyguanosine (dG). We previously reported that the C-linked adduct 8-(4″-hydroxyphenyl)-dG (p-PhOH-dG) undergoes oxidation in the presence of Na(2)IrCl(6) or horseradish peroxidase (HRP)/H(2)O(2) to generate polymeric adducts through phenoxyl radical production [ Weishar ( 2008 ) Org. Lett. 10 , 1839 - 1842 ]. We now report on reaction of p-PhOH-dG with two radical-generating systems, Cu(II)/H(2)O(2) or Fe(II)-EDTA/H(2)O(2), which were utilized to study the fate of the C-linked adduct in the presence of hydroxyl radical (HO(•)). The radical-generating systems facilitate (i) hydroxylation of the phenolic ring to afford the catechol adduct 8-(3″,4″-dihydroxyphenyl)-dG (3″,4″-DHPh-dG) and (ii) H-atom abstraction from the sugar moiety to generate the deglycosylated base p-PhOH-G. The ratios of 3″,4″-DHPh-dG to p-PhOH-G were ∼1 for Cu(II)/H(2)O(2) and ∼0.13 for Fe(II)-EDTA/H(2)O(2). The formation of 3″,4″-DHPh-dG was found to have important consequences in terms of reactivity. The catechol adduct has a lower oxidation potential than p-PhOH-dG and is sensitive to aqueous basic media, undergoing decomposition to generate a dicarboxylic acid derivative. In the presence of excess N-acetylcysteine (NAC), oxidation of 3″,4″-DHPh-dG produced mono-NAC and di-NAC conjugates. Our results imply that secondary oxidative pathways of phenolic-dG lesions are likely to contribute to toxicity." @default.
- W2322439409 created "2016-06-24" @default.
- W2322439409 creator A5019898281 @default.
- W2322439409 creator A5038862912 @default.
- W2322439409 creator A5055099337 @default.
- W2322439409 creator A5083208697 @default.
- W2322439409 date "2012-01-05" @default.
- W2322439409 modified "2023-10-14" @default.
- W2322439409 title "Hydroxyl Radical-Induced Oxidation of a Phenolic C-Linked 2′-Deoxyguanosine Adduct Yields a Reactive Catechol" @default.
- W2322439409 cites W1528113712 @default.
- W2322439409 cites W1536646644 @default.
- W2322439409 cites W1578225142 @default.
- W2322439409 cites W1964603841 @default.
- W2322439409 cites W1965493566 @default.
- W2322439409 cites W1966598308 @default.
- W2322439409 cites W1966701816 @default.
- W2322439409 cites W1969751032 @default.
- W2322439409 cites W1970783889 @default.
- W2322439409 cites W1973313598 @default.
- W2322439409 cites W1973428256 @default.
- W2322439409 cites W1976611945 @default.
- W2322439409 cites W1977716110 @default.
- W2322439409 cites W1981911167 @default.
- W2322439409 cites W1982045707 @default.
- W2322439409 cites W1982191774 @default.
- W2322439409 cites W1982243106 @default.
- W2322439409 cites W1983574014 @default.
- W2322439409 cites W1989849405 @default.
- W2322439409 cites W1992739230 @default.
- W2322439409 cites W1996092400 @default.
- W2322439409 cites W1998935051 @default.
- W2322439409 cites W1999664769 @default.
- W2322439409 cites W1999735839 @default.
- W2322439409 cites W2000774559 @default.
- W2322439409 cites W2002091803 @default.
- W2322439409 cites W2002600822 @default.
- W2322439409 cites W2010205595 @default.
- W2322439409 cites W2010597170 @default.
- W2322439409 cites W2014168546 @default.
- W2322439409 cites W2016083703 @default.
- W2322439409 cites W2019986419 @default.
- W2322439409 cites W2021516438 @default.
- W2322439409 cites W2022785992 @default.
- W2322439409 cites W2024094969 @default.
- W2322439409 cites W2026838497 @default.
- W2322439409 cites W2027784487 @default.
- W2322439409 cites W2031109095 @default.
- W2322439409 cites W2031853663 @default.
- W2322439409 cites W2031973327 @default.
- W2322439409 cites W2037426867 @default.
- W2322439409 cites W2040843368 @default.
- W2322439409 cites W2047406811 @default.
- W2322439409 cites W2051020728 @default.
- W2322439409 cites W2057414260 @default.
- W2322439409 cites W2058044047 @default.
- W2322439409 cites W2060245901 @default.
- W2322439409 cites W2060937481 @default.
- W2322439409 cites W2065397036 @default.
- W2322439409 cites W2068323437 @default.
- W2322439409 cites W2069297991 @default.
- W2322439409 cites W2070541933 @default.
- W2322439409 cites W2076456468 @default.
- W2322439409 cites W2080414939 @default.
- W2322439409 cites W2086365723 @default.
- W2322439409 cites W2087276593 @default.
- W2322439409 cites W2090990681 @default.
- W2322439409 cites W2127790195 @default.
- W2322439409 cites W2151653100 @default.
- W2322439409 cites W2152196435 @default.
- W2322439409 cites W2180691202 @default.
- W2322439409 cites W2316935434 @default.
- W2322439409 cites W2320282699 @default.
- W2322439409 cites W2331031065 @default.
- W2322439409 cites W2334938787 @default.
- W2322439409 cites W2951899868 @default.
- W2322439409 cites W3005301111 @default.
- W2322439409 doi "https://doi.org/10.1021/tx200365r" @default.
- W2322439409 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22176608" @default.
- W2322439409 hasPublicationYear "2012" @default.
- W2322439409 type Work @default.
- W2322439409 sameAs 2322439409 @default.
- W2322439409 citedByCount "2" @default.
- W2322439409 countsByYear W23224394092012 @default.
- W2322439409 countsByYear W23224394092013 @default.
- W2322439409 crossrefType "journal-article" @default.
- W2322439409 hasAuthorship W2322439409A5019898281 @default.
- W2322439409 hasAuthorship W2322439409A5038862912 @default.
- W2322439409 hasAuthorship W2322439409A5055099337 @default.
- W2322439409 hasAuthorship W2322439409A5083208697 @default.
- W2322439409 hasConcept C108204754 @default.
- W2322439409 hasConcept C139066938 @default.
- W2322439409 hasConcept C142724271 @default.
- W2322439409 hasConcept C143425029 @default.
- W2322439409 hasConcept C155647269 @default.
- W2322439409 hasConcept C178790620 @default.
- W2322439409 hasConcept C181199279 @default.
- W2322439409 hasConcept C185592680 @default.
- W2322439409 hasConcept C204787440 @default.