Matches in SemOpenAlex for { <https://semopenalex.org/work/W2322644678> ?p ?o ?g. }
- W2322644678 endingPage "1536" @default.
- W2322644678 startingPage "1528" @default.
- W2322644678 abstract "Toxicogenomics (TGx) endeavors to elucidate the underlying molecular mechanisms through exploring gene expression profiles in response to toxic substances. Recently, RNA-Seq is increasingly regarded as a more powerful alternative to microarrays in TGx studies. However, realizing RNA-Seq’s full potential requires novel approaches to extracting information from the complex TGx data. Considering read counts as the number of times a word occurs in a document, gene expression profiles from RNA-Seq are analogous to a word by document matrix used in text mining. Topic modeling aiming at to discover the latent structures in text corpora would be helpful to explore RNA-Seq based TGx data. In this study, topic modeling was applied on a typical RNA-Seq based TGx data set to discover hidden functional modules. The RNA-Seq based gene expression profiles were transformed into “documents”, on which latent Dirichlet allocation (LDA) was used to build a topic model. We found samples treated by the compounds with the same modes of actions (MoAs) could be clustered based on topic similarities. The topic most relevant to each cluster was identified as a “marker” topic, which was interpreted by gene enrichment analysis with MoAs then confirmed by compound and pathways associations mined from literature. To further validate the “marker” topics, we tested topic transferability from RNA-Seq to microarrays. The RNA-Seq based gene expression profile of a topic specifically associated with peroxisome proliferator-activated receptors (PPAR) signaling pathway was used to query samples with similar expression profiles in two different microarray data sets, yielding accuracy of about 85%. This proof-of-concept study demonstrates the applicability of topic modeling to discover functional modules in RNA-Seq data and suggests a valuable computational tool for leveraging information within TGx data in RNA-Seq era." @default.
- W2322644678 created "2016-06-24" @default.
- W2322644678 creator A5024782080 @default.
- W2322644678 creator A5042778420 @default.
- W2322644678 creator A5048655816 @default.
- W2322644678 creator A5054599082 @default.
- W2322644678 creator A5068886380 @default.
- W2322644678 creator A5076615541 @default.
- W2322644678 creator A5089640396 @default.
- W2322644678 date "2014-08-14" @default.
- W2322644678 modified "2023-10-16" @default.
- W2322644678 title "Discovering Functional Modules by Topic Modeling RNA-Seq Based Toxicogenomic Data" @default.
- W2322644678 cites W102699897 @default.
- W2322644678 cites W1524478189 @default.
- W2322644678 cites W1603522985 @default.
- W2322644678 cites W1970106273 @default.
- W2322644678 cites W1979044015 @default.
- W2322644678 cites W1980096779 @default.
- W2322644678 cites W1981509058 @default.
- W2322644678 cites W1984708728 @default.
- W2322644678 cites W2001082470 @default.
- W2322644678 cites W2020983524 @default.
- W2322644678 cites W2028299177 @default.
- W2322644678 cites W2061516382 @default.
- W2322644678 cites W2098405997 @default.
- W2322644678 cites W2107326660 @default.
- W2322644678 cites W2107841008 @default.
- W2322644678 cites W2114090345 @default.
- W2322644678 cites W2120087347 @default.
- W2322644678 cites W2120963275 @default.
- W2322644678 cites W2121211805 @default.
- W2322644678 cites W2131236456 @default.
- W2322644678 cites W2132588654 @default.
- W2322644678 cites W2140387377 @default.
- W2322644678 cites W2144199131 @default.
- W2322644678 cites W2151187507 @default.
- W2322644678 cites W2152239989 @default.
- W2322644678 cites W2153252164 @default.
- W2322644678 cites W2154431984 @default.
- W2322644678 cites W2158217645 @default.
- W2322644678 doi "https://doi.org/10.1021/tx500148n" @default.
- W2322644678 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25083553" @default.
- W2322644678 hasPublicationYear "2014" @default.
- W2322644678 type Work @default.
- W2322644678 sameAs 2322644678 @default.
- W2322644678 citedByCount "7" @default.
- W2322644678 countsByYear W23226446782014 @default.
- W2322644678 countsByYear W23226446782015 @default.
- W2322644678 countsByYear W23226446782016 @default.
- W2322644678 countsByYear W23226446782018 @default.
- W2322644678 countsByYear W23226446782019 @default.
- W2322644678 countsByYear W23226446782021 @default.
- W2322644678 crossrefType "journal-article" @default.
- W2322644678 hasAuthorship W2322644678A5024782080 @default.
- W2322644678 hasAuthorship W2322644678A5042778420 @default.
- W2322644678 hasAuthorship W2322644678A5048655816 @default.
- W2322644678 hasAuthorship W2322644678A5054599082 @default.
- W2322644678 hasAuthorship W2322644678A5068886380 @default.
- W2322644678 hasAuthorship W2322644678A5076615541 @default.
- W2322644678 hasAuthorship W2322644678A5089640396 @default.
- W2322644678 hasConcept C104317684 @default.
- W2322644678 hasConcept C107397762 @default.
- W2322644678 hasConcept C150194340 @default.
- W2322644678 hasConcept C154945302 @default.
- W2322644678 hasConcept C162317418 @default.
- W2322644678 hasConcept C171686336 @default.
- W2322644678 hasConcept C199360897 @default.
- W2322644678 hasConcept C41008148 @default.
- W2322644678 hasConcept C500882744 @default.
- W2322644678 hasConcept C54355233 @default.
- W2322644678 hasConcept C67705224 @default.
- W2322644678 hasConcept C70721500 @default.
- W2322644678 hasConcept C86803240 @default.
- W2322644678 hasConcept C90559484 @default.
- W2322644678 hasConcept C93231420 @default.
- W2322644678 hasConcept C95371953 @default.
- W2322644678 hasConceptScore W2322644678C104317684 @default.
- W2322644678 hasConceptScore W2322644678C107397762 @default.
- W2322644678 hasConceptScore W2322644678C150194340 @default.
- W2322644678 hasConceptScore W2322644678C154945302 @default.
- W2322644678 hasConceptScore W2322644678C162317418 @default.
- W2322644678 hasConceptScore W2322644678C171686336 @default.
- W2322644678 hasConceptScore W2322644678C199360897 @default.
- W2322644678 hasConceptScore W2322644678C41008148 @default.
- W2322644678 hasConceptScore W2322644678C500882744 @default.
- W2322644678 hasConceptScore W2322644678C54355233 @default.
- W2322644678 hasConceptScore W2322644678C67705224 @default.
- W2322644678 hasConceptScore W2322644678C70721500 @default.
- W2322644678 hasConceptScore W2322644678C86803240 @default.
- W2322644678 hasConceptScore W2322644678C90559484 @default.
- W2322644678 hasConceptScore W2322644678C93231420 @default.
- W2322644678 hasConceptScore W2322644678C95371953 @default.
- W2322644678 hasFunder F4320332163 @default.
- W2322644678 hasIssue "9" @default.
- W2322644678 hasLocation W23226446781 @default.
- W2322644678 hasLocation W23226446782 @default.
- W2322644678 hasOpenAccess W2322644678 @default.
- W2322644678 hasPrimaryLocation W23226446781 @default.