Matches in SemOpenAlex for { <https://semopenalex.org/work/W2322667036> ?p ?o ?g. }
- W2322667036 endingPage "2969" @default.
- W2322667036 startingPage "2960" @default.
- W2322667036 abstract "ConspectusFor the traditional model of gas-phase X– + CH3Y SN2 reactions, C3v ion-dipole pre- and postreaction complexes X–---CH3Y and XCH3---Y–, separated by a central barrier, are formed. Statistical intramolecular dynamics are assumed for these complexes, so that their unimolecular rate constants are given by RRKM theory. Both previous simulations and experiments have shown that the dynamics of these complexes are not statistical and of interest is how these nonstatistical dynamics affect the SN2 rate constant. This work also found there was a transition from an indirect, nonstatistical, complex forming mechanism, to a direct mechanism, as either the vibrational and/or relative translational energy of the reactants was increased. The current Account reviews recent collaborative studies involving molecular beam ion-imaging experiments and direct (on-the-fly) dynamics simulations of the SN2 reactions for which Cl–, F–, and OH– react with CH3I. Also considered are reactions of the microsolvated anions OH–(H2O) and OH–(H2O)2 with CH3I. These studies have provided a detailed understanding of the atomistic mechanisms for these SN2 reactions.Overall, the atomistic dynamics for the Cl– + CH3I SN2 reaction follows those found in previous studies. The reaction is indirect, complex forming at low reactant collision energies, and then there is a transition to direct reaction between 0.2 and 0.4 eV. The direct reaction may occur by rebound mechanism, in which the ClCH3 product rebounds backward from the I– product or a stripping mechanism in which Cl– strips CH3 from the I atom and scatters in the forward direction. A similar indirect to direct mechanistic transition was observed in previous work for the Cl– + CH3Cl and Cl– + CH3Br SN2 reactions. At the high collision energy of 1.9 eV, a new indirect mechanism, called the roundabout, was discovered.For the F– + CH3I reaction, there is not a transition from indirect to direct reaction as Erel is increased. The indirect mechanism, with prereaction complex formation, is important at all the Erel investigated, contributing up ∼60% of the reaction. The remaining direct reaction occurs by the rebound and stripping mechanisms.Though the potential energy curve for the OH– + CH3I reaction is similar to that for F– + CH3I, the two reactions have different dynamics. They are akin, in that for both there is not a transition from an indirect to direct reaction. However, for F– + CH3I indirect reaction dominates at all Erel, but it is less important for OH– + CH3I and becomes negligible as Erel is increased. Stripping is a minor channel for F– + CH3I, but accounts for more than 60% of the OH– + CH3I reaction at high Erel.Adding one or two H2O molecules to OH– alters the reaction dynamics from that for unsolvated OH–. Adding one H2O molecule enhances indirect reaction at low Erel, and changes the reaction mechanism from primarily stripping to rebound at high Erel. With two H2O molecules the dynamics is indirect and isotropic at all collision energies." @default.
- W2322667036 created "2016-06-24" @default.
- W2322667036 creator A5003911734 @default.
- W2322667036 creator A5018285762 @default.
- W2322667036 creator A5037936730 @default.
- W2322667036 creator A5069124714 @default.
- W2322667036 creator A5086245044 @default.
- W2322667036 creator A5087210570 @default.
- W2322667036 date "2014-08-14" @default.
- W2322667036 modified "2023-09-29" @default.
- W2322667036 title "Identification of Atomic-Level Mechanisms for Gas-Phase X<sup>–</sup> + CH<sub>3</sub>Y S<sub>N</sub>2 Reactions by Combined Experiments and Simulations" @default.
- W2322667036 cites W1572782308 @default.
- W2322667036 cites W1580533485 @default.
- W2322667036 cites W1964567730 @default.
- W2322667036 cites W1980933422 @default.
- W2322667036 cites W1991559423 @default.
- W2322667036 cites W1992008923 @default.
- W2322667036 cites W2004688165 @default.
- W2322667036 cites W2006958390 @default.
- W2322667036 cites W2010526410 @default.
- W2322667036 cites W2031637652 @default.
- W2322667036 cites W2036247488 @default.
- W2322667036 cites W2038998158 @default.
- W2322667036 cites W2045509728 @default.
- W2322667036 cites W2048605775 @default.
- W2322667036 cites W2051833948 @default.
- W2322667036 cites W2061279766 @default.
- W2322667036 cites W2065071311 @default.
- W2322667036 cites W2068425827 @default.
- W2322667036 cites W2071365618 @default.
- W2322667036 cites W2072017249 @default.
- W2322667036 cites W2073658437 @default.
- W2322667036 cites W2081116667 @default.
- W2322667036 cites W2085413415 @default.
- W2322667036 cites W2086571898 @default.
- W2322667036 cites W2087664198 @default.
- W2322667036 cites W2088053814 @default.
- W2322667036 cites W2090593325 @default.
- W2322667036 cites W2090964418 @default.
- W2322667036 cites W2092978833 @default.
- W2322667036 cites W2110845908 @default.
- W2322667036 cites W2162846088 @default.
- W2322667036 cites W2315875704 @default.
- W2322667036 cites W2316130583 @default.
- W2322667036 cites W2321555997 @default.
- W2322667036 cites W2331350608 @default.
- W2322667036 cites W2332334217 @default.
- W2322667036 cites W2952004235 @default.
- W2322667036 cites W3004493114 @default.
- W2322667036 cites W300456368 @default.
- W2322667036 cites W4234517436 @default.
- W2322667036 cites W4245792956 @default.
- W2322667036 cites W612385047 @default.
- W2322667036 doi "https://doi.org/10.1021/ar5001764" @default.
- W2322667036 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25120237" @default.
- W2322667036 hasPublicationYear "2014" @default.
- W2322667036 type Work @default.
- W2322667036 sameAs 2322667036 @default.
- W2322667036 citedByCount "122" @default.
- W2322667036 countsByYear W23226670362015 @default.
- W2322667036 countsByYear W23226670362016 @default.
- W2322667036 countsByYear W23226670362017 @default.
- W2322667036 countsByYear W23226670362018 @default.
- W2322667036 countsByYear W23226670362019 @default.
- W2322667036 countsByYear W23226670362020 @default.
- W2322667036 countsByYear W23226670362021 @default.
- W2322667036 countsByYear W23226670362022 @default.
- W2322667036 countsByYear W23226670362023 @default.
- W2322667036 crossrefType "journal-article" @default.
- W2322667036 hasAuthorship W2322667036A5003911734 @default.
- W2322667036 hasAuthorship W2322667036A5018285762 @default.
- W2322667036 hasAuthorship W2322667036A5037936730 @default.
- W2322667036 hasAuthorship W2322667036A5069124714 @default.
- W2322667036 hasAuthorship W2322667036A5086245044 @default.
- W2322667036 hasAuthorship W2322667036A5087210570 @default.
- W2322667036 hasConcept C121332964 @default.
- W2322667036 hasConcept C145148216 @default.
- W2322667036 hasConcept C147597530 @default.
- W2322667036 hasConcept C147789679 @default.
- W2322667036 hasConcept C148898269 @default.
- W2322667036 hasConcept C149635348 @default.
- W2322667036 hasConcept C159467904 @default.
- W2322667036 hasConcept C161790260 @default.
- W2322667036 hasConcept C178790620 @default.
- W2322667036 hasConcept C185592680 @default.
- W2322667036 hasConcept C2777734200 @default.
- W2322667036 hasConcept C32909587 @default.
- W2322667036 hasConcept C37798101 @default.
- W2322667036 hasConcept C41008148 @default.
- W2322667036 hasConcept C55493867 @default.
- W2322667036 hasConcept C58312451 @default.
- W2322667036 hasConcept C59593255 @default.
- W2322667036 hasConcept C62520636 @default.
- W2322667036 hasConcept C65024703 @default.
- W2322667036 hasConcept C71240020 @default.
- W2322667036 hasConcept C75079739 @default.
- W2322667036 hasConcept C89031862 @default.
- W2322667036 hasConcept C93391505 @default.