Matches in SemOpenAlex for { <https://semopenalex.org/work/W2322743658> ?p ?o ?g. }
- W2322743658 endingPage "2290" @default.
- W2322743658 startingPage "2282" @default.
- W2322743658 abstract "Traditionally, molecules are analyzed in a test tube. Taking biochemistry as an example, the majority of our knowledge about cellular content comes from analysis of fixed cells or tissue homogenates using tools such as immunoblotting and liquid chromatography-mass spectrometry. These tools can indicate the presence of molecules but do not provide information on their location or interaction with each other in real time, restricting our understanding of the functions of the molecule under study. For real-time imaging of labeled molecules in live cells, fluorescence microscopy is the tool of choice. Fluorescent labels, however, are too bulky for small molecules such as fatty acids, amino acids, and cholesterol. These challenges highlight a critical need for development of chemical imaging platforms that allow in situ or in vivo analysis of molecules. Vibrational spectroscopy based on spontaneous Raman scattering is widely used for label-free analysis of chemical content in cells and tissues. However, the Raman process is a weak effect, limiting its application for fast chemical imaging of a living system. With high imaging speed and 3D spatial resolution, coherent Raman scattering microscopy is enabling a new approach for real-time vibrational imaging of single cells in a living system. In most experiments, coherent Raman processes involve two excitation fields denoted as pump at ωp and Stokes at ωs. When the beating frequency between the pump and Stokes fields (ωp - ωs) is resonant with a Raman-active molecular vibration, four major coherent Raman scattering processes occur simultaneously, namely, coherent anti-Stokes Raman scattering (CARS) at (ωp - ωs) + ωp, coherent Stokes Raman scattering (CSRS) at ωs - (ωp - ωs), stimulated Raman gain (SRG) at ωs, and stimulated Raman loss (SRL) at ωp. In SRG, the Stokes beam experiences a gain in intensity, whereas in SRL, the pump beam experiences a loss. Both SRG and SRL belong to stimulated Raman scattering (SRS), in which the energy difference between the pump and Stokes fields is transferred to the molecule for vibrational excitation. The SRS signal appears at the same wavelengths as the excitation fields and is commonly extracted through a phase-sensitive detection scheme. The detected intensity change because of a Raman transition is proportional to Im[χ(3)]IpIs, where χ(3) represents the third-order nonlinear susceptibility, Ip and Is stand for the intensity of the pump and Stokes fields. In this Account, we discuss the most recent advances in the technical development and enabling applications of SRS microscopy. Compared to CARS, the SRS contrast is free of nonresonant background. Moreover, the SRS intensity is linearly proportional to the density of target molecules in focus. For single-frequency imaging, an SRS microscope offers a speed that is ∼1000 times faster than a line-scan Raman microscope and 10,000 times faster than a point-scan Raman microscope. It is important to emphasize that SRS and spontaneous Raman scattering are complementary to each other. Spontaneous Raman spectroscopy covers the entire window of molecular vibrations, which allows extraction of subtleties via multivariate analysis. SRS offers the speed advantage by focusing on either a single Raman band or a defined spectral window of target molecules. Integrating single-frequency SRS imaging and spontaneous Raman spectroscopy on a single platform allows quantitative compositional analysis of objects inside single live cells." @default.
- W2322743658 created "2016-06-24" @default.
- W2322743658 creator A5013736647 @default.
- W2322743658 creator A5022072820 @default.
- W2322743658 creator A5059393102 @default.
- W2322743658 creator A5084657803 @default.
- W2322743658 date "2014-05-28" @default.
- W2322743658 modified "2023-10-12" @default.
- W2322743658 title "Fast Vibrational Imaging of Single Cells and Tissues by Stimulated Raman Scattering Microscopy" @default.
- W2322743658 cites W1966684717 @default.
- W2322743658 cites W1971104329 @default.
- W2322743658 cites W1977448398 @default.
- W2322743658 cites W1978716058 @default.
- W2322743658 cites W1982250038 @default.
- W2322743658 cites W1982914783 @default.
- W2322743658 cites W1985376284 @default.
- W2322743658 cites W1989839235 @default.
- W2322743658 cites W1992979438 @default.
- W2322743658 cites W2003062992 @default.
- W2322743658 cites W2007130143 @default.
- W2322743658 cites W2009345619 @default.
- W2322743658 cites W2011641087 @default.
- W2322743658 cites W2015324563 @default.
- W2322743658 cites W2017760735 @default.
- W2322743658 cites W2017971667 @default.
- W2322743658 cites W2020170071 @default.
- W2322743658 cites W2024349178 @default.
- W2322743658 cites W2032860037 @default.
- W2322743658 cites W2035041177 @default.
- W2322743658 cites W2036375664 @default.
- W2322743658 cites W2037912676 @default.
- W2322743658 cites W2039976599 @default.
- W2322743658 cites W2044203059 @default.
- W2322743658 cites W2045901799 @default.
- W2322743658 cites W2053310384 @default.
- W2322743658 cites W2055625108 @default.
- W2322743658 cites W2057259234 @default.
- W2322743658 cites W2057905444 @default.
- W2322743658 cites W2061992783 @default.
- W2322743658 cites W2071070545 @default.
- W2322743658 cites W2071274854 @default.
- W2322743658 cites W2072443063 @default.
- W2322743658 cites W2080910018 @default.
- W2322743658 cites W2089975180 @default.
- W2322743658 cites W2092875135 @default.
- W2322743658 cites W2094295322 @default.
- W2322743658 cites W2096138335 @default.
- W2322743658 cites W2098442298 @default.
- W2322743658 cites W2101014507 @default.
- W2322743658 cites W2102874009 @default.
- W2322743658 cites W2103025101 @default.
- W2322743658 cites W2104460891 @default.
- W2322743658 cites W2115318086 @default.
- W2322743658 cites W2120360844 @default.
- W2322743658 cites W2128856936 @default.
- W2322743658 cites W2132298953 @default.
- W2322743658 cites W2135461398 @default.
- W2322743658 cites W2135612711 @default.
- W2322743658 cites W2139013197 @default.
- W2322743658 cites W2147022806 @default.
- W2322743658 cites W2148664969 @default.
- W2322743658 cites W2150345928 @default.
- W2322743658 cites W2159648456 @default.
- W2322743658 cites W2163790025 @default.
- W2322743658 cites W2169986236 @default.
- W2322743658 cites W2325992348 @default.
- W2322743658 cites W53269414 @default.
- W2322743658 doi "https://doi.org/10.1021/ar400331q" @default.
- W2322743658 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4139189" @default.
- W2322743658 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24871269" @default.
- W2322743658 hasPublicationYear "2014" @default.
- W2322743658 type Work @default.
- W2322743658 sameAs 2322743658 @default.
- W2322743658 citedByCount "130" @default.
- W2322743658 countsByYear W23227436582014 @default.
- W2322743658 countsByYear W23227436582015 @default.
- W2322743658 countsByYear W23227436582016 @default.
- W2322743658 countsByYear W23227436582017 @default.
- W2322743658 countsByYear W23227436582018 @default.
- W2322743658 countsByYear W23227436582019 @default.
- W2322743658 countsByYear W23227436582020 @default.
- W2322743658 countsByYear W23227436582021 @default.
- W2322743658 countsByYear W23227436582022 @default.
- W2322743658 countsByYear W23227436582023 @default.
- W2322743658 crossrefType "journal-article" @default.
- W2322743658 hasAuthorship W2322743658A5013736647 @default.
- W2322743658 hasAuthorship W2322743658A5022072820 @default.
- W2322743658 hasAuthorship W2322743658A5059393102 @default.
- W2322743658 hasAuthorship W2322743658A5084657803 @default.
- W2322743658 hasBestOaLocation W23227436581 @default.
- W2322743658 hasConcept C113196181 @default.
- W2322743658 hasConcept C120665830 @default.
- W2322743658 hasConcept C121332964 @default.
- W2322743658 hasConcept C12554922 @default.
- W2322743658 hasConcept C147080431 @default.
- W2322743658 hasConcept C154945302 @default.
- W2322743658 hasConcept C159078339 @default.
- W2322743658 hasConcept C169274487 @default.