Matches in SemOpenAlex for { <https://semopenalex.org/work/W2322799392> ?p ?o ?g. }
- W2322799392 endingPage "65" @default.
- W2322799392 startingPage "54" @default.
- W2322799392 abstract "Abstract In this study the capabilities of seven multispectral and hyperspectral satellite imagers to estimate soil variables (clay, sand, silt and organic carbon content) were investigated using data from soil spectral libraries. Four current (EO-1 ALI and Hyperion, Landsat 8 OLI, Sentinel-2 MSI) and three forthcoming (EnMAP, PRISMA and HyspIRI) satellite imagers were compared. To this aim, two soil spectra datasets that simulated each imager were obtained: ( i ) resampled spectra according to the specific spectral response and resolution of each satellite imager and ( ii ) resampled spectra with declared or actual noise (radiometric and atmospheric) added. Compared with those using full spectral resolution data, the accuracy of Partial Least Square Regression (PLSR) predictive models generally decreased when using resampled spectra. In the absence of noise, the performances of hyperspectral imagers, in terms of Ratio of Performance to Interquartile Range (RPIQ), were generally significantly better than those of multispectral imagers. For instance the best RPIQ for sand estimation was obtained using EnMAP simulated data (2.56), whereas the outcomes gained using multispectral imagers varied from 1.56 and 2.28. The addition of noise to the simulated spectra brought about a decrease of statistical accuracy in all estimation models, especially for Hyperion data. Although the addition of noise reduced the performance differences between multispectral and hyperspectral imagers, the forthcoming hyperspectral imagers nonetheless provided the best RPIQ values for clay (2.16–2.33), sand (2.10–2.17), silt (2.77–2.85) and organic carbon (2.48–2.51) estimation. To better understand the impact of spectral resolution and signal to noise ratio (SNR) on the estimation of soil variables, PLSR models were applied to resampled and simulated spectra, iteratively increasing the bandwidth to: 10, 20, 40, 80 and 160 nm. Results showed that, for a bandwidth of 40 nm, i.e., a spectral resolution lower than that of current and forthcoming imagers, the estimation accuracy was very similar to that obtained with a higher spectral resolution. Forthcoming hyperspectral imagers will therefore improve the accuracy of soil variables estimation from bare soil imagery with respect to the results achievable by current hyperspectral and multispectral imagers, however this improvement is still too limited, to allow an accurate quantitative estimation of soil texture and SOC. This work provides useful indications about what could be expected, for the estimation of the most important soil variables, from the next generation of hyperspectral satellite imagers." @default.
- W2322799392 created "2016-06-24" @default.
- W2322799392 creator A5011054993 @default.
- W2322799392 creator A5028303505 @default.
- W2322799392 creator A5067377025 @default.
- W2322799392 creator A5078006662 @default.
- W2322799392 creator A5082135242 @default.
- W2322799392 creator A5089051713 @default.
- W2322799392 date "2016-06-01" @default.
- W2322799392 modified "2023-10-11" @default.
- W2322799392 title "Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon" @default.
- W2322799392 cites W1776244730 @default.
- W2322799392 cites W1973273412 @default.
- W2322799392 cites W1976574563 @default.
- W2322799392 cites W1977428701 @default.
- W2322799392 cites W1986938560 @default.
- W2322799392 cites W1998053851 @default.
- W2322799392 cites W1998843090 @default.
- W2322799392 cites W2006348173 @default.
- W2322799392 cites W2013665199 @default.
- W2322799392 cites W2026250491 @default.
- W2322799392 cites W2028555769 @default.
- W2322799392 cites W2039908035 @default.
- W2322799392 cites W2040666431 @default.
- W2322799392 cites W2043359577 @default.
- W2322799392 cites W2045679636 @default.
- W2322799392 cites W2051378084 @default.
- W2322799392 cites W2055394295 @default.
- W2322799392 cites W2058311689 @default.
- W2322799392 cites W2066212935 @default.
- W2322799392 cites W2067558695 @default.
- W2322799392 cites W2073503722 @default.
- W2322799392 cites W2073858026 @default.
- W2322799392 cites W2075140676 @default.
- W2322799392 cites W2078967929 @default.
- W2322799392 cites W2080545724 @default.
- W2322799392 cites W2084366347 @default.
- W2322799392 cites W2086916637 @default.
- W2322799392 cites W2098722265 @default.
- W2322799392 cites W2116395914 @default.
- W2322799392 cites W2122883935 @default.
- W2322799392 cites W2125763679 @default.
- W2322799392 cites W2140959043 @default.
- W2322799392 cites W2150853822 @default.
- W2322799392 cites W2156056024 @default.
- W2322799392 cites W2161245744 @default.
- W2322799392 cites W2161723080 @default.
- W2322799392 cites W2172601898 @default.
- W2322799392 doi "https://doi.org/10.1016/j.rse.2016.03.025" @default.
- W2322799392 hasPublicationYear "2016" @default.
- W2322799392 type Work @default.
- W2322799392 sameAs 2322799392 @default.
- W2322799392 citedByCount "171" @default.
- W2322799392 countsByYear W23227993922016 @default.
- W2322799392 countsByYear W23227993922017 @default.
- W2322799392 countsByYear W23227993922018 @default.
- W2322799392 countsByYear W23227993922019 @default.
- W2322799392 countsByYear W23227993922020 @default.
- W2322799392 countsByYear W23227993922021 @default.
- W2322799392 countsByYear W23227993922022 @default.
- W2322799392 countsByYear W23227993922023 @default.
- W2322799392 crossrefType "journal-article" @default.
- W2322799392 hasAuthorship W2322799392A5011054993 @default.
- W2322799392 hasAuthorship W2322799392A5028303505 @default.
- W2322799392 hasAuthorship W2322799392A5067377025 @default.
- W2322799392 hasAuthorship W2322799392A5078006662 @default.
- W2322799392 hasAuthorship W2322799392A5082135242 @default.
- W2322799392 hasAuthorship W2322799392A5089051713 @default.
- W2322799392 hasConcept C104541649 @default.
- W2322799392 hasConcept C115961682 @default.
- W2322799392 hasConcept C127313418 @default.
- W2322799392 hasConcept C154945302 @default.
- W2322799392 hasConcept C159078339 @default.
- W2322799392 hasConcept C159390177 @default.
- W2322799392 hasConcept C159750122 @default.
- W2322799392 hasConcept C173163844 @default.
- W2322799392 hasConcept C175963888 @default.
- W2322799392 hasConcept C2781195486 @default.
- W2322799392 hasConcept C39432304 @default.
- W2322799392 hasConcept C39464130 @default.
- W2322799392 hasConcept C41008148 @default.
- W2322799392 hasConcept C62649853 @default.
- W2322799392 hasConceptScore W2322799392C104541649 @default.
- W2322799392 hasConceptScore W2322799392C115961682 @default.
- W2322799392 hasConceptScore W2322799392C127313418 @default.
- W2322799392 hasConceptScore W2322799392C154945302 @default.
- W2322799392 hasConceptScore W2322799392C159078339 @default.
- W2322799392 hasConceptScore W2322799392C159390177 @default.
- W2322799392 hasConceptScore W2322799392C159750122 @default.
- W2322799392 hasConceptScore W2322799392C173163844 @default.
- W2322799392 hasConceptScore W2322799392C175963888 @default.
- W2322799392 hasConceptScore W2322799392C2781195486 @default.
- W2322799392 hasConceptScore W2322799392C39432304 @default.
- W2322799392 hasConceptScore W2322799392C39464130 @default.
- W2322799392 hasConceptScore W2322799392C41008148 @default.
- W2322799392 hasConceptScore W2322799392C62649853 @default.
- W2322799392 hasLocation W23227993921 @default.
- W2322799392 hasOpenAccess W2322799392 @default.