Matches in SemOpenAlex for { <https://semopenalex.org/work/W2323007472> ?p ?o ?g. }
- W2323007472 endingPage "3079" @default.
- W2323007472 startingPage "3071" @default.
- W2323007472 abstract "It is well accepted that catalytically active surfaces frequently adapt to the reaction environment (gas composition, temperature) and that relevant active phases may only be created and observed during the ongoing reaction. Clearly, this requires the application of in situ spectroscopy to monitor catalysts at work. While changes in structure and composition may already occur for monometallic single crystal surfaces, such changes are typically more severe for oxide supported nanoparticles, in particular when they are composed of two metals. The metals may form ordered intermetallic compounds (e.g. PdZn on ZnO, Pd2Ga on Ga2O3) or disordered substitutional alloys (e.g. PdCu, PtCu on hydrotalcite). We discuss the formation and stability of bimetallic nanoparticles, focusing on the effect of atomic and electronic structure on catalytic selectivity for methanol steam reforming (MSR) and hydrodechlorination of trichloroethylene. Emphasis is placed on the in situ characterization of functioning catalysts, mainly by (polarization modulated) infrared spectroscopy, ambient pressure X-ray photoelectron spectroscopy, X-ray absorption near edge structure, and X-ray diffraction. In the present contribution, we pursue a two-fold, fundamental and applied, approach investigating technologically applied catalysts as well as model catalysts, which provides comprehensive and complementary information of the relevant surface processes at the atomic or molecular level. Comparison to results of theoretical simulations yields further insight. Several key aspects were identified that control the nanoparticle functionality: (i) alloying (IMC formation) leads to site isolation of specific (e.g. Pd) atoms but also yields very specific electronic structure due to the (e.g. Zn or Ga or Cu) neighboring atoms; (i) for intermetallic PdZn, the thickness of the surface alloy, and its resulting valence band structure and corrugation, turned out to be critical for MSR selectivity; (ii) the limited stability of phases, such as Pd2Ga under MSR conditions, also limits selectivity; (iii) favorably bimetallic catalysts act bifunctional, such as activating methanol AND water or decomposing trichlorothylene AND activating hydrogen; (iv) bifunctionality is achieved either by the two metals or by one metal and the metal-oxide interface; (v) intimate contact between the two interacting sites is required (that cannot be realized by two monometallic nanoparticles being just located close by). The current studies illustrate how rather simple bimetallic nanoparticles may exhibit intriguing diversity and flexibility, exceeding by far the properties of the individual metals. It is also demonstrated how complex reactions can be elucidated with the help of in situ spectroscopy, in particular when complementary methods with varying surface sensitivity are applied." @default.
- W2323007472 created "2016-06-24" @default.
- W2323007472 creator A5035507878 @default.
- W2323007472 creator A5088541152 @default.
- W2323007472 date "2014-09-23" @default.
- W2323007472 modified "2023-10-03" @default.
- W2323007472 title "In Situ Spectroscopy of Complex Surface Reactions on Supported Pd–Zn, Pd–Ga, and Pd(Pt)–Cu Nanoparticles" @default.
- W2323007472 cites W145378493 @default.
- W2323007472 cites W149761547 @default.
- W2323007472 cites W1967541766 @default.
- W2323007472 cites W1971600732 @default.
- W2323007472 cites W1972446770 @default.
- W2323007472 cites W1975337846 @default.
- W2323007472 cites W1976242732 @default.
- W2323007472 cites W1981635493 @default.
- W2323007472 cites W1986436630 @default.
- W2323007472 cites W1989887084 @default.
- W2323007472 cites W1989994141 @default.
- W2323007472 cites W2003146583 @default.
- W2323007472 cites W2004187886 @default.
- W2323007472 cites W2005282327 @default.
- W2323007472 cites W2007784918 @default.
- W2323007472 cites W2007910065 @default.
- W2323007472 cites W2007933135 @default.
- W2323007472 cites W2013969772 @default.
- W2323007472 cites W2016147728 @default.
- W2323007472 cites W2017803494 @default.
- W2323007472 cites W2018611881 @default.
- W2323007472 cites W2019309578 @default.
- W2323007472 cites W2023140555 @default.
- W2323007472 cites W2028918759 @default.
- W2323007472 cites W2030537149 @default.
- W2323007472 cites W2032114106 @default.
- W2323007472 cites W2034275169 @default.
- W2323007472 cites W2037464206 @default.
- W2323007472 cites W2044825158 @default.
- W2323007472 cites W2047708749 @default.
- W2323007472 cites W2051105322 @default.
- W2323007472 cites W2055472170 @default.
- W2323007472 cites W2060873458 @default.
- W2323007472 cites W2064180111 @default.
- W2323007472 cites W2073466472 @default.
- W2323007472 cites W2083215567 @default.
- W2323007472 cites W2085448009 @default.
- W2323007472 cites W2089437528 @default.
- W2323007472 cites W2093213591 @default.
- W2323007472 cites W2102753640 @default.
- W2323007472 cites W2105998361 @default.
- W2323007472 cites W2113933656 @default.
- W2323007472 cites W2128388712 @default.
- W2323007472 cites W2153292598 @default.
- W2323007472 cites W2157393293 @default.
- W2323007472 cites W2159577306 @default.
- W2323007472 cites W2160758247 @default.
- W2323007472 cites W2318812678 @default.
- W2323007472 cites W2331370730 @default.
- W2323007472 cites W2331505952 @default.
- W2323007472 doi "https://doi.org/10.1021/ar500220v" @default.
- W2323007472 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25247260" @default.
- W2323007472 hasPublicationYear "2014" @default.
- W2323007472 type Work @default.
- W2323007472 sameAs 2323007472 @default.
- W2323007472 citedByCount "61" @default.
- W2323007472 countsByYear W23230074722015 @default.
- W2323007472 countsByYear W23230074722016 @default.
- W2323007472 countsByYear W23230074722017 @default.
- W2323007472 countsByYear W23230074722018 @default.
- W2323007472 countsByYear W23230074722019 @default.
- W2323007472 countsByYear W23230074722020 @default.
- W2323007472 countsByYear W23230074722021 @default.
- W2323007472 countsByYear W23230074722022 @default.
- W2323007472 countsByYear W23230074722023 @default.
- W2323007472 crossrefType "journal-article" @default.
- W2323007472 hasAuthorship W2323007472A5035507878 @default.
- W2323007472 hasAuthorship W2323007472A5088541152 @default.
- W2323007472 hasConcept C121332964 @default.
- W2323007472 hasConcept C127413603 @default.
- W2323007472 hasConcept C153642686 @default.
- W2323007472 hasConcept C155672457 @default.
- W2323007472 hasConcept C161790260 @default.
- W2323007472 hasConcept C171250308 @default.
- W2323007472 hasConcept C175583648 @default.
- W2323007472 hasConcept C175708663 @default.
- W2323007472 hasConcept C178790620 @default.
- W2323007472 hasConcept C185592680 @default.
- W2323007472 hasConcept C191897082 @default.
- W2323007472 hasConcept C192562407 @default.
- W2323007472 hasConcept C27501479 @default.
- W2323007472 hasConcept C2780026712 @default.
- W2323007472 hasConcept C32891209 @default.
- W2323007472 hasConcept C42360764 @default.
- W2323007472 hasConcept C43411465 @default.
- W2323007472 hasConcept C62520636 @default.
- W2323007472 hasConcept C64792281 @default.
- W2323007472 hasConceptScore W2323007472C121332964 @default.
- W2323007472 hasConceptScore W2323007472C127413603 @default.
- W2323007472 hasConceptScore W2323007472C153642686 @default.
- W2323007472 hasConceptScore W2323007472C155672457 @default.