Matches in SemOpenAlex for { <https://semopenalex.org/work/W2323200062> ?p ?o ?g. }
- W2323200062 endingPage "1089" @default.
- W2323200062 startingPage "1077" @default.
- W2323200062 abstract "Automatic and reliable segmentation of the prostate is an important but difficult task for various clinical applications such as prostate cancer radiotherapy. The main challenges for accurate MR prostate localization lie in two aspects: (1) inhomogeneous and inconsistent appearance around prostate boundary, and (2) the large shape variation across different patients. To tackle these two problems, we propose a new deformable MR prostate segmentation method by unifying deep feature learning with the sparse patch matching. First, instead of directly using handcrafted features, we propose to learn the latent feature representation from prostate MR images by the stacked sparse auto-encoder (SSAE). Since the deep learning algorithm learns the feature hierarchy from the data, the learned features are often more concise and effective than the handcrafted features in describing the underlying data. To improve the discriminability of learned features, we further refine the feature representation in a supervised fashion. Second, based on the learned features, a sparse patch matching method is proposed to infer a prostate likelihood map by transferring the prostate labels from multiple atlases to the new prostate MR image. Finally, a deformable segmentation is used to integrate a sparse shape model with the prostate likelihood map for achieving the final segmentation. The proposed method has been extensively evaluated on the dataset that contains 66 T2-wighted prostate MR images. Experimental results show that the deep-learned features are more effective than the handcrafted features in guiding MR prostate segmentation. Moreover, our method shows superior performance than other state-of-the-art segmentation methods." @default.
- W2323200062 created "2016-06-24" @default.
- W2323200062 creator A5000937401 @default.
- W2323200062 creator A5068139862 @default.
- W2323200062 creator A5075338951 @default.
- W2323200062 date "2016-04-01" @default.
- W2323200062 modified "2023-10-02" @default.
- W2323200062 title "Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching" @default.
- W2323200062 cites W1503722557 @default.
- W2323200062 cites W1530370346 @default.
- W2323200062 cites W1872492457 @default.
- W2323200062 cites W1893210478 @default.
- W2323200062 cites W1948745668 @default.
- W2323200062 cites W1969739559 @default.
- W2323200062 cites W1980913318 @default.
- W2323200062 cites W1988626696 @default.
- W2323200062 cites W1991135330 @default.
- W2323200062 cites W2003533398 @default.
- W2323200062 cites W2011658829 @default.
- W2323200062 cites W2022508996 @default.
- W2323200062 cites W2025768430 @default.
- W2323200062 cites W2029115635 @default.
- W2323200062 cites W2035517574 @default.
- W2323200062 cites W2036109700 @default.
- W2323200062 cites W2038952578 @default.
- W2323200062 cites W2039051707 @default.
- W2323200062 cites W2053984362 @default.
- W2323200062 cites W2056926361 @default.
- W2323200062 cites W2069901410 @default.
- W2323200062 cites W2070209883 @default.
- W2323200062 cites W2077591651 @default.
- W2323200062 cites W2085091083 @default.
- W2323200062 cites W2089302686 @default.
- W2323200062 cites W2089507999 @default.
- W2323200062 cites W2094286293 @default.
- W2323200062 cites W2100495367 @default.
- W2323200062 cites W2102595307 @default.
- W2323200062 cites W2102854936 @default.
- W2323200062 cites W2107956652 @default.
- W2323200062 cites W2108988045 @default.
- W2323200062 cites W2112941339 @default.
- W2323200062 cites W2116040950 @default.
- W2323200062 cites W2130325614 @default.
- W2323200062 cites W2132984323 @default.
- W2323200062 cites W2136922672 @default.
- W2323200062 cites W2148347694 @default.
- W2323200062 cites W2151103935 @default.
- W2323200062 cites W2157848968 @default.
- W2323200062 cites W2161969291 @default.
- W2323200062 cites W2163595993 @default.
- W2323200062 cites W2163922914 @default.
- W2323200062 cites W2164598857 @default.
- W2323200062 cites W2165698076 @default.
- W2323200062 cites W2169624977 @default.
- W2323200062 cites W66531091 @default.
- W2323200062 doi "https://doi.org/10.1109/tmi.2015.2508280" @default.
- W2323200062 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5002995" @default.
- W2323200062 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26685226" @default.
- W2323200062 hasPublicationYear "2016" @default.
- W2323200062 type Work @default.
- W2323200062 sameAs 2323200062 @default.
- W2323200062 citedByCount "196" @default.
- W2323200062 countsByYear W23232000622016 @default.
- W2323200062 countsByYear W23232000622017 @default.
- W2323200062 countsByYear W23232000622018 @default.
- W2323200062 countsByYear W23232000622019 @default.
- W2323200062 countsByYear W23232000622020 @default.
- W2323200062 countsByYear W23232000622021 @default.
- W2323200062 countsByYear W23232000622022 @default.
- W2323200062 countsByYear W23232000622023 @default.
- W2323200062 crossrefType "journal-article" @default.
- W2323200062 hasAuthorship W2323200062A5000937401 @default.
- W2323200062 hasAuthorship W2323200062A5068139862 @default.
- W2323200062 hasAuthorship W2323200062A5075338951 @default.
- W2323200062 hasBestOaLocation W23232000622 @default.
- W2323200062 hasConcept C105795698 @default.
- W2323200062 hasConcept C108583219 @default.
- W2323200062 hasConcept C124066611 @default.
- W2323200062 hasConcept C124504099 @default.
- W2323200062 hasConcept C138885662 @default.
- W2323200062 hasConcept C153180895 @default.
- W2323200062 hasConcept C154945302 @default.
- W2323200062 hasConcept C165064840 @default.
- W2323200062 hasConcept C2776401178 @default.
- W2323200062 hasConcept C31972630 @default.
- W2323200062 hasConcept C33923547 @default.
- W2323200062 hasConcept C41008148 @default.
- W2323200062 hasConcept C41895202 @default.
- W2323200062 hasConcept C52622490 @default.
- W2323200062 hasConcept C59404180 @default.
- W2323200062 hasConcept C89600930 @default.
- W2323200062 hasConceptScore W2323200062C105795698 @default.
- W2323200062 hasConceptScore W2323200062C108583219 @default.
- W2323200062 hasConceptScore W2323200062C124066611 @default.
- W2323200062 hasConceptScore W2323200062C124504099 @default.
- W2323200062 hasConceptScore W2323200062C138885662 @default.
- W2323200062 hasConceptScore W2323200062C153180895 @default.
- W2323200062 hasConceptScore W2323200062C154945302 @default.