Matches in SemOpenAlex for { <https://semopenalex.org/work/W2323365870> ?p ?o ?g. }
- W2323365870 endingPage "3430" @default.
- W2323365870 startingPage "3420" @default.
- W2323365870 abstract "The eukaryotic calcium/calmodulin-dependent protein phosphatase calcineurin is crucial for the environmental adaption of fungi. However, the mechanism of coordinate regulation of the response to salt stress by calcineurin and the high-affinity calcium channel CchA in fungi is not well understood. Here we show that the deletion of cchA suppresses the hyphal growth defects caused by the loss of calcineurin under salt stress in Aspergillus nidulans Additionally, the hypersensitivity of the ΔcnaA strain to extracellular calcium and cell-wall-damaging agents can be suppressed by cchA deletion. Using the calcium-sensitive photoprotein aequorin to monitor the cytoplasmic Ca(2+) concentration ([Ca(2+)]c) in living cells, we found that calcineurin negatively regulates CchA on calcium uptake in response to external calcium in normally cultured cells. However, in salt-stress-pretreated cells, loss of either cnaA or cchA significantly decreased the [Ca(2+)]c, but a deficiency in both cnaA and cchA switches the [Ca(2+)]c to the reference strain level, indicating that calcineurin and CchA synergistically coordinate calcium influx under salt stress. Moreover, real-time PCR results showed that the dysfunction of cchA in the ΔcnaA strain dramatically restored the expression of enaA (a major determinant for sodium detoxification), which was abolished in the ΔcnaA strain under salt stress. These results suggest that double deficiencies of cnaA and cchA could bypass the requirement of calcineurin to induce enaA expression under salt stress. Finally, YvcA, a member of the transient receptor potential channel (TRPC) protein family of vacuolar Ca(2+) channels, was proven to compensate for calcineurin-CchA in fungal salt stress adaption.IMPORTANCE The feedback inhibition relationship between calcineurin and the calcium channel Cch1/Mid1 has been well recognized from yeast. Interestingly, our previous study (S. Wang et al., PLoS One 7:e46564, 2012, http://dx.doi.org/10.1371/journal.pone.0046564) showed that the deletion of cchA could suppress the hyphal growth defects caused by the loss of calcineurin under salt stress in Aspergillus nidulans In this study, our findings suggest that fungi are able to develop a unique mechanism for adapting to environmental salt stress. Compared to cells cultured normally, the NaCl-pretreated cells had a remarkable increase in transient [Ca(2+)]c Furthermore, we show that calcineurin and CchA are required to modulate cellular calcium levels and synergistically coordinate calcium influx under salt stress. Finally, YvcA, a member of of the TRPC family of vacuolar Ca(2+) channels, was proven to compensate for calcineurin-CchA in fungal salt stress adaption. The findings in this study provide insights into the complex regulatory links between calcineurin and CchA to maintain cytoplasmic Ca(2+) homeostasis in response to different environments." @default.
- W2323365870 created "2016-06-24" @default.
- W2323365870 creator A5001822187 @default.
- W2323365870 creator A5004363711 @default.
- W2323365870 creator A5023102506 @default.
- W2323365870 creator A5043115414 @default.
- W2323365870 creator A5076409244 @default.
- W2323365870 date "2016-06-01" @default.
- W2323365870 modified "2023-10-10" @default.
- W2323365870 title "Calcineurin and Calcium Channel CchA Coordinate the Salt Stress Response by Regulating Cytoplasmic Ca <sup>2+</sup> Homeostasis in Aspergillus nidulans" @default.
- W2323365870 cites W1498821897 @default.
- W2323365870 cites W1587918801 @default.
- W2323365870 cites W1774442194 @default.
- W2323365870 cites W1885923855 @default.
- W2323365870 cites W1967336595 @default.
- W2323365870 cites W1968791599 @default.
- W2323365870 cites W1975107946 @default.
- W2323365870 cites W1982964375 @default.
- W2323365870 cites W1988837963 @default.
- W2323365870 cites W1990876235 @default.
- W2323365870 cites W1991453893 @default.
- W2323365870 cites W1991471153 @default.
- W2323365870 cites W1993363193 @default.
- W2323365870 cites W1994548351 @default.
- W2323365870 cites W1994590215 @default.
- W2323365870 cites W1997918227 @default.
- W2323365870 cites W1998286496 @default.
- W2323365870 cites W1998514259 @default.
- W2323365870 cites W2000200558 @default.
- W2323365870 cites W2007360586 @default.
- W2323365870 cites W2008886111 @default.
- W2323365870 cites W2010884399 @default.
- W2323365870 cites W2022227140 @default.
- W2323365870 cites W2038157212 @default.
- W2323365870 cites W2039694257 @default.
- W2323365870 cites W2045576655 @default.
- W2323365870 cites W2047195096 @default.
- W2323365870 cites W2063363559 @default.
- W2323365870 cites W2064417087 @default.
- W2323365870 cites W2066800858 @default.
- W2323365870 cites W2074789447 @default.
- W2323365870 cites W2075204796 @default.
- W2323365870 cites W2076557642 @default.
- W2323365870 cites W2077465900 @default.
- W2323365870 cites W2080169144 @default.
- W2323365870 cites W2082568641 @default.
- W2323365870 cites W2086202782 @default.
- W2323365870 cites W2090819199 @default.
- W2323365870 cites W2093516457 @default.
- W2323365870 cites W2105634866 @default.
- W2323365870 cites W2106409109 @default.
- W2323365870 cites W2107277218 @default.
- W2323365870 cites W2110120074 @default.
- W2323365870 cites W2117365095 @default.
- W2323365870 cites W2122070976 @default.
- W2323365870 cites W2122653633 @default.
- W2323365870 cites W2130122649 @default.
- W2323365870 cites W2133588840 @default.
- W2323365870 cites W2136142422 @default.
- W2323365870 cites W2144489906 @default.
- W2323365870 cites W2147448772 @default.
- W2323365870 cites W2147728137 @default.
- W2323365870 cites W2151805205 @default.
- W2323365870 cites W2157018056 @default.
- W2323365870 cites W2166828324 @default.
- W2323365870 cites W2169180708 @default.
- W2323365870 cites W2170875194 @default.
- W2323365870 cites W2172196619 @default.
- W2323365870 cites W2192080449 @default.
- W2323365870 cites W2332534830 @default.
- W2323365870 cites W74173866 @default.
- W2323365870 doi "https://doi.org/10.1128/aem.00330-16" @default.
- W2323365870 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4959226" @default.
- W2323365870 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27037124" @default.
- W2323365870 hasPublicationYear "2016" @default.
- W2323365870 type Work @default.
- W2323365870 sameAs 2323365870 @default.
- W2323365870 citedByCount "18" @default.
- W2323365870 countsByYear W23233658702017 @default.
- W2323365870 countsByYear W23233658702018 @default.
- W2323365870 countsByYear W23233658702019 @default.
- W2323365870 countsByYear W23233658702020 @default.
- W2323365870 countsByYear W23233658702021 @default.
- W2323365870 countsByYear W23233658702022 @default.
- W2323365870 crossrefType "journal-article" @default.
- W2323365870 hasAuthorship W2323365870A5001822187 @default.
- W2323365870 hasAuthorship W2323365870A5004363711 @default.
- W2323365870 hasAuthorship W2323365870A5023102506 @default.
- W2323365870 hasAuthorship W2323365870A5043115414 @default.
- W2323365870 hasAuthorship W2323365870A5076409244 @default.
- W2323365870 hasBestOaLocation W23233658701 @default.
- W2323365870 hasConcept C104317684 @default.
- W2323365870 hasConcept C126322002 @default.
- W2323365870 hasConcept C128057223 @default.
- W2323365870 hasConcept C143065580 @default.
- W2323365870 hasConcept C178790620 @default.
- W2323365870 hasConcept C185592680 @default.
- W2323365870 hasConcept C18699975 @default.