Matches in SemOpenAlex for { <https://semopenalex.org/work/W2323643803> ?p ?o ?g. }
- W2323643803 endingPage "597" @default.
- W2323643803 startingPage "591" @default.
- W2323643803 abstract "<b>Purpose:</b> To evaluate a novel monoenergetic post-processing algorithm (MEI+) in patients with poor intrahepatic contrast enhancement. <b>Materials and Methods:</b> 25 patients were retrospectively included in this study. Late-phase imaging of the upper abdomen, which was acquired in dual-energy mode (100/140 kV), was used as a model for poor intrahepatic contrast enhancement. Traditional monoenergetic images (MEI), linearly weighted mixed images with different mixing ratios (MI), sole 100 and 140 kV and MEI+ images were calculated. MEI+ is a novel technique which applies frequency-based mixing of the low keV images and an image of optimal keV from a noise perspective to combine the benefits of both image stacks. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the intrahepatic vasculature (IHV) and liver parenchyma (LP) were objectively measured and depiction of IHV was subjectively rated and correlated with portal venous imaging by two readers in consensus. <b>Results:</b> MEI+ was able to increase the SNR of the IHV (5.7 ± 0.4 at 40keV) and LP (4.9 ± 1.0 at 90keV) and CNR (2.1 ± 0.6 at 40keV) greatly compared to MEI (5.1 ± 1.1 at 80keV, 4.7 ± 1.0 at 80keV, 1.0 ± 0.4 at 70keV), MI (5.2 ± 1.1 M5:5, 4.8 ± 1.0 M5:5, 1.0 ± 3.5 M9:1), sole 100 kV images (4.4 ± 1.0, 3.7 ± 0.8, 1.0 ± 0.3) and 140 kV images (2.8 ± 0.5, 3.1 ± 0.6, 0.1 ± 0.2). Subjective assessment rated MEI+ of virtual 40 keV superior to all other images. <b>Conclusion:</b> MEI+ is a very promising algorithm for monoenergetic extrapolation which is able to overcome noise limitations associated with traditional monoenergetic techniques at low virtual keV levels and consequently does not suffer from a decline of SNR and CNR at low keV values. This algorithm allows an improvement of IHV depiction in the presence of poor contrast. <b>Key points:</b> • The evaluated new image-based algorithm for virtual monoenergetic imaging allows calculating low virtual keV images from dual energy datasets with significantly improved contrast-to-noise ratios. • The image based novel monoenergetic extrapolation algorithm applies frequency-based mixing of the low keV images and an image of optimal keV from a noise perspective to combine the benefits of both image stacks. • When compared to traditional monoenergetic images, the novel monoenergetic algorithm has improved contrast-to-noise ratios for both low and high virtual keV images. • Contrast-enhanced dual energy images with poor contrast conditions can be significantly improved, e.g. late phase imaging of the liver. <b>Citation Format:</b> • Schabel C, Bongers M, Sedlmair M et al. Assessment of the Hepatic Veins in Poor Contrast Conditions using Dual Energy CT: Evaluation of a Novel Monoenergetic Extrapolation Software Algorithm. Fortschr Röntgenstr 2014; 186: 591 – 597" @default.
- W2323643803 created "2016-06-24" @default.
- W2323643803 creator A5016868143 @default.
- W2323643803 creator A5038740193 @default.
- W2323643803 creator A5040159549 @default.
- W2323643803 creator A5042009119 @default.
- W2323643803 creator A5048667978 @default.
- W2323643803 creator A5067265734 @default.
- W2323643803 creator A5074981980 @default.
- W2323643803 creator A5079150347 @default.
- W2323643803 date "2014-04-22" @default.
- W2323643803 modified "2023-10-06" @default.
- W2323643803 title "Assessment of the Hepatic Veins in Poor Contrast Conditions using Dual Energy CT: Evaluation of a Novel Monoenergetic Extrapolation Software Algorithm" @default.
- W2323643803 cites W1972105774 @default.
- W2323643803 cites W1999800769 @default.
- W2323643803 cites W2027176728 @default.
- W2323643803 cites W2037233077 @default.
- W2323643803 cites W2040337964 @default.
- W2323643803 cites W2065588252 @default.
- W2323643803 cites W2092782073 @default.
- W2323643803 cites W2135343562 @default.
- W2323643803 cites W2139856958 @default.
- W2323643803 cites W2149286716 @default.
- W2323643803 cites W2151012954 @default.
- W2323643803 doi "https://doi.org/10.1055/s-0034-1366423" @default.
- W2323643803 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24756426" @default.
- W2323643803 hasPublicationYear "2014" @default.
- W2323643803 type Work @default.
- W2323643803 sameAs 2323643803 @default.
- W2323643803 citedByCount "55" @default.
- W2323643803 countsByYear W23236438032014 @default.
- W2323643803 countsByYear W23236438032015 @default.
- W2323643803 countsByYear W23236438032016 @default.
- W2323643803 countsByYear W23236438032017 @default.
- W2323643803 countsByYear W23236438032018 @default.
- W2323643803 countsByYear W23236438032019 @default.
- W2323643803 countsByYear W23236438032020 @default.
- W2323643803 countsByYear W23236438032021 @default.
- W2323643803 countsByYear W23236438032022 @default.
- W2323643803 countsByYear W23236438032023 @default.
- W2323643803 crossrefType "journal-article" @default.
- W2323643803 hasAuthorship W2323643803A5016868143 @default.
- W2323643803 hasAuthorship W2323643803A5038740193 @default.
- W2323643803 hasAuthorship W2323643803A5040159549 @default.
- W2323643803 hasAuthorship W2323643803A5042009119 @default.
- W2323643803 hasAuthorship W2323643803A5048667978 @default.
- W2323643803 hasAuthorship W2323643803A5067265734 @default.
- W2323643803 hasAuthorship W2323643803A5074981980 @default.
- W2323643803 hasAuthorship W2323643803A5079150347 @default.
- W2323643803 hasBestOaLocation W23236438031 @default.
- W2323643803 hasConcept C105795698 @default.
- W2323643803 hasConcept C11413529 @default.
- W2323643803 hasConcept C115961682 @default.
- W2323643803 hasConcept C120665830 @default.
- W2323643803 hasConcept C121332964 @default.
- W2323643803 hasConcept C126322002 @default.
- W2323643803 hasConcept C126838900 @default.
- W2323643803 hasConcept C13944312 @default.
- W2323643803 hasConcept C154945302 @default.
- W2323643803 hasConcept C186370098 @default.
- W2323643803 hasConcept C2776502983 @default.
- W2323643803 hasConcept C2776541429 @default.
- W2323643803 hasConcept C2776886416 @default.
- W2323643803 hasConcept C2779983558 @default.
- W2323643803 hasConcept C2989005 @default.
- W2323643803 hasConcept C2994545362 @default.
- W2323643803 hasConcept C33923547 @default.
- W2323643803 hasConcept C41008148 @default.
- W2323643803 hasConcept C55020928 @default.
- W2323643803 hasConcept C71924100 @default.
- W2323643803 hasConcept C86190813 @default.
- W2323643803 hasConcept C99498987 @default.
- W2323643803 hasConceptScore W2323643803C105795698 @default.
- W2323643803 hasConceptScore W2323643803C11413529 @default.
- W2323643803 hasConceptScore W2323643803C115961682 @default.
- W2323643803 hasConceptScore W2323643803C120665830 @default.
- W2323643803 hasConceptScore W2323643803C121332964 @default.
- W2323643803 hasConceptScore W2323643803C126322002 @default.
- W2323643803 hasConceptScore W2323643803C126838900 @default.
- W2323643803 hasConceptScore W2323643803C13944312 @default.
- W2323643803 hasConceptScore W2323643803C154945302 @default.
- W2323643803 hasConceptScore W2323643803C186370098 @default.
- W2323643803 hasConceptScore W2323643803C2776502983 @default.
- W2323643803 hasConceptScore W2323643803C2776541429 @default.
- W2323643803 hasConceptScore W2323643803C2776886416 @default.
- W2323643803 hasConceptScore W2323643803C2779983558 @default.
- W2323643803 hasConceptScore W2323643803C2989005 @default.
- W2323643803 hasConceptScore W2323643803C2994545362 @default.
- W2323643803 hasConceptScore W2323643803C33923547 @default.
- W2323643803 hasConceptScore W2323643803C41008148 @default.
- W2323643803 hasConceptScore W2323643803C55020928 @default.
- W2323643803 hasConceptScore W2323643803C71924100 @default.
- W2323643803 hasConceptScore W2323643803C86190813 @default.
- W2323643803 hasConceptScore W2323643803C99498987 @default.
- W2323643803 hasIssue "06" @default.
- W2323643803 hasLocation W23236438031 @default.
- W2323643803 hasLocation W23236438032 @default.
- W2323643803 hasOpenAccess W2323643803 @default.