Matches in SemOpenAlex for { <https://semopenalex.org/work/W2323735230> ?p ?o ?g. }
- W2323735230 endingPage "1004" @default.
- W2323735230 startingPage "994" @default.
- W2323735230 abstract "Although gene therapy offers an attractive strategy for treating inherited disorders, current techniques using viral and nonviral delivery systems have not yielded many successful results in clinical trials. Viral vectors such as retroviruses, lentiviruses, and adenoviruses deliver genes efficiently; however, the possibility of negative outcomes from viral transformation cannot be completely ruled out. In contrast, various types of nonviral vectors are attracting considerable attention because they are easier to handle and induce weak immune responses.Cationic polymers, such as polyethylenimine (PEI) and poly(N,N-dimethylaminopropyl acrylamide) (PDMAPAAm), can generate nanoparticles through the formation of polyion complexes, “polyplexes” with DNA. These nonviral systems offer many advantages over viral systems. The primary obstacle to implementing these cationic polymers in an effective gene therapy remains their comparatively inefficient gene transfection in vivo.We describe four strategies for the development of hyperbranched star vectors (SVs) for enhancing DNA or siRNA delivery. The molecular design was performed by living radical polymerization in which the chain length can be controlled by photoirradiation and solution conditions, including concentrations of the monomer or iniferter (a molecule that serves as a combination of initiator, transfer agent, and terminator). The branch composition is controlled by the types of monomers that are added stepwise. In our first strategy, we prepared a series of only cationic PDMAPAAm-based SVs with no branches or 3, 4, or 6 branching numbers. These SVs could form polyion complexes (polyplexes) by mixing with DNA only in aqueous solution. The relative gene expression activity of the delivered DNA increased according to the degree of branching. In addition, increasing the molecular weight of SVs and narrowing their polydispersity index (PDI) improved their activity. For targeting DNA delivery to the specific cells, we modified the SV with ligands. Interestingly, the SV could adsorb the RGD peptide, making gene transfer possible in endothelial cells which are usually refractory to such treatments. The peptide was added to the polyplex solution without covalent derivatization to the SV. The introduction of additional branching by cross-linking using iniferter-induced coupling reactions further improved gene transfection activity. After block copolymerization of PDMAPAAm-based SVs with a nonionic monomer (DMAAm), the blocked SVs (BSVs) produced polyplexes with DNA that had excellent colloidal stability for 1 month, leading to efficient in vitro and in vivo gene delivery. Moreover, BSVs served as carriers for siRNA delivery. BSVs enhanced siRNA-mediated gene silencing in mouse liver and lung. As an alternative approach, we developed a novel gene transfection method in which the polyplexes were kept in contact with their deposition surface by thermoresponsive blocking of the SV. This strategy was more effective than reverse transfection and the conventional transfection methods in solution." @default.
- W2323735230 created "2016-06-24" @default.
- W2323735230 creator A5064192633 @default.
- W2323735230 date "2012-02-21" @default.
- W2323735230 modified "2023-10-11" @default.
- W2323735230 title "Hyperbranched Polymeric “Star Vectors” for Effective DNA or siRNA Delivery" @default.
- W2323735230 cites W1492488181 @default.
- W2323735230 cites W1611419331 @default.
- W2323735230 cites W1970135359 @default.
- W2323735230 cites W1975261828 @default.
- W2323735230 cites W1975600099 @default.
- W2323735230 cites W1977818700 @default.
- W2323735230 cites W1986023680 @default.
- W2323735230 cites W1991660519 @default.
- W2323735230 cites W1994502349 @default.
- W2323735230 cites W1996354945 @default.
- W2323735230 cites W1996768957 @default.
- W2323735230 cites W1998193460 @default.
- W2323735230 cites W2006010807 @default.
- W2323735230 cites W2009110008 @default.
- W2323735230 cites W2010137809 @default.
- W2323735230 cites W2013067239 @default.
- W2323735230 cites W2014742667 @default.
- W2323735230 cites W2016639612 @default.
- W2323735230 cites W2025393650 @default.
- W2323735230 cites W2028893730 @default.
- W2323735230 cites W2031246774 @default.
- W2323735230 cites W2031458247 @default.
- W2323735230 cites W2033086871 @default.
- W2323735230 cites W2034210172 @default.
- W2323735230 cites W2036040900 @default.
- W2323735230 cites W2036354853 @default.
- W2323735230 cites W2049943721 @default.
- W2323735230 cites W2058871524 @default.
- W2323735230 cites W2064607098 @default.
- W2323735230 cites W2067928188 @default.
- W2323735230 cites W2070150025 @default.
- W2323735230 cites W2077325967 @default.
- W2323735230 cites W2084817867 @default.
- W2323735230 cites W2087366454 @default.
- W2323735230 cites W2088991560 @default.
- W2323735230 cites W2089230533 @default.
- W2323735230 cites W2089968607 @default.
- W2323735230 cites W2097131232 @default.
- W2323735230 cites W2100448885 @default.
- W2323735230 cites W2114286636 @default.
- W2323735230 cites W2117318887 @default.
- W2323735230 cites W2128800271 @default.
- W2323735230 cites W2146847077 @default.
- W2323735230 cites W2146888510 @default.
- W2323735230 cites W2152145927 @default.
- W2323735230 cites W2153205607 @default.
- W2323735230 cites W2170553025 @default.
- W2323735230 doi "https://doi.org/10.1021/ar200220t" @default.
- W2323735230 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22353143" @default.
- W2323735230 hasPublicationYear "2012" @default.
- W2323735230 type Work @default.
- W2323735230 sameAs 2323735230 @default.
- W2323735230 citedByCount "68" @default.
- W2323735230 countsByYear W23237352302012 @default.
- W2323735230 countsByYear W23237352302013 @default.
- W2323735230 countsByYear W23237352302014 @default.
- W2323735230 countsByYear W23237352302015 @default.
- W2323735230 countsByYear W23237352302016 @default.
- W2323735230 countsByYear W23237352302017 @default.
- W2323735230 countsByYear W23237352302018 @default.
- W2323735230 countsByYear W23237352302019 @default.
- W2323735230 countsByYear W23237352302020 @default.
- W2323735230 countsByYear W23237352302021 @default.
- W2323735230 countsByYear W23237352302022 @default.
- W2323735230 countsByYear W23237352302023 @default.
- W2323735230 crossrefType "journal-article" @default.
- W2323735230 hasAuthorship W2323735230A5064192633 @default.
- W2323735230 hasConcept C104317684 @default.
- W2323735230 hasConcept C111599444 @default.
- W2323735230 hasConcept C12554922 @default.
- W2323735230 hasConcept C135983454 @default.
- W2323735230 hasConcept C166940927 @default.
- W2323735230 hasConcept C178790620 @default.
- W2323735230 hasConcept C183882617 @default.
- W2323735230 hasConcept C185592680 @default.
- W2323735230 hasConcept C188027245 @default.
- W2323735230 hasConcept C21951064 @default.
- W2323735230 hasConcept C2775925850 @default.
- W2323735230 hasConcept C32470452 @default.
- W2323735230 hasConcept C40767141 @default.
- W2323735230 hasConcept C43953973 @default.
- W2323735230 hasConcept C521977710 @default.
- W2323735230 hasConcept C54009773 @default.
- W2323735230 hasConcept C552990157 @default.
- W2323735230 hasConcept C55493867 @default.
- W2323735230 hasConcept C86803240 @default.
- W2323735230 hasConceptScore W2323735230C104317684 @default.
- W2323735230 hasConceptScore W2323735230C111599444 @default.
- W2323735230 hasConceptScore W2323735230C12554922 @default.
- W2323735230 hasConceptScore W2323735230C135983454 @default.
- W2323735230 hasConceptScore W2323735230C166940927 @default.
- W2323735230 hasConceptScore W2323735230C178790620 @default.