Matches in SemOpenAlex for { <https://semopenalex.org/work/W2324009747> ?p ?o ?g. }
- W2324009747 endingPage "1823" @default.
- W2324009747 startingPage "1812" @default.
- W2324009747 abstract "This paper introduces a statistical estimation framework for magnetic resonance (MR) fingerprinting, a recently proposed quantitative imaging paradigm. Within this framework, we present a maximum likelihood (ML) formalism to estimate multiple MR tissue parameter maps directly from highly undersampled, noisy k-space data. A novel algorithm, based on variable splitting, the alternating direction method of multipliers, and the variable projection method, is developed to solve the resulting optimization problem. Representative results from both simulations and in vivo experiments demonstrate that the proposed approach yields significantly improved accuracy in parameter estimation, compared to the conventional MR fingerprinting reconstruction. Moreover, the proposed framework provides new theoretical insights into the conventional approach. We show analytically that the conventional approach is an approximation to the ML reconstruction; more precisely, it is exactly equivalent to the first iteration of the proposed algorithm for the ML reconstruction, provided that a gridding reconstruction is used as an initialization." @default.
- W2324009747 created "2016-06-24" @default.
- W2324009747 creator A5005761034 @default.
- W2324009747 creator A5051660049 @default.
- W2324009747 creator A5060182809 @default.
- W2324009747 creator A5061087485 @default.
- W2324009747 creator A5090829577 @default.
- W2324009747 date "2016-08-01" @default.
- W2324009747 modified "2023-10-16" @default.
- W2324009747 title "Maximum Likelihood Reconstruction for Magnetic Resonance Fingerprinting" @default.
- W2324009747 cites W1492207267 @default.
- W2324009747 cites W1510815927 @default.
- W2324009747 cites W1515247487 @default.
- W2324009747 cites W1539262087 @default.
- W2324009747 cites W1539322517 @default.
- W2324009747 cites W1544724604 @default.
- W2324009747 cites W1596747661 @default.
- W2324009747 cites W1600055553 @default.
- W2324009747 cites W1867572349 @default.
- W2324009747 cites W1878263927 @default.
- W2324009747 cites W1971571088 @default.
- W2324009747 cites W2005041367 @default.
- W2324009747 cites W2008257035 @default.
- W2324009747 cites W2018089423 @default.
- W2324009747 cites W2019371831 @default.
- W2324009747 cites W2021925329 @default.
- W2324009747 cites W2035808554 @default.
- W2324009747 cites W2042636283 @default.
- W2324009747 cites W2043981719 @default.
- W2324009747 cites W2045527031 @default.
- W2324009747 cites W2048273977 @default.
- W2324009747 cites W2055285572 @default.
- W2324009747 cites W2060638594 @default.
- W2324009747 cites W2061708033 @default.
- W2324009747 cites W2063414032 @default.
- W2324009747 cites W2071833573 @default.
- W2324009747 cites W2075358160 @default.
- W2324009747 cites W2080097309 @default.
- W2324009747 cites W2083095625 @default.
- W2324009747 cites W2087853921 @default.
- W2324009747 cites W2090636411 @default.
- W2324009747 cites W2096581338 @default.
- W2324009747 cites W2099801199 @default.
- W2324009747 cites W2099944953 @default.
- W2324009747 cites W2100705753 @default.
- W2324009747 cites W2115221929 @default.
- W2324009747 cites W2117649283 @default.
- W2324009747 cites W2142808775 @default.
- W2324009747 cites W2144288697 @default.
- W2324009747 cites W2162029555 @default.
- W2324009747 cites W2166997774 @default.
- W2324009747 cites W2296651953 @default.
- W2324009747 cites W2949483514 @default.
- W2324009747 cites W2963288124 @default.
- W2324009747 cites W3102310425 @default.
- W2324009747 cites W4249760698 @default.
- W2324009747 cites W4292363360 @default.
- W2324009747 doi "https://doi.org/10.1109/tmi.2016.2531640" @default.
- W2324009747 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5271418" @default.
- W2324009747 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26915119" @default.
- W2324009747 hasPublicationYear "2016" @default.
- W2324009747 type Work @default.
- W2324009747 sameAs 2324009747 @default.
- W2324009747 citedByCount "96" @default.
- W2324009747 countsByYear W23240097472016 @default.
- W2324009747 countsByYear W23240097472017 @default.
- W2324009747 countsByYear W23240097472018 @default.
- W2324009747 countsByYear W23240097472019 @default.
- W2324009747 countsByYear W23240097472020 @default.
- W2324009747 countsByYear W23240097472021 @default.
- W2324009747 countsByYear W23240097472022 @default.
- W2324009747 countsByYear W23240097472023 @default.
- W2324009747 crossrefType "journal-article" @default.
- W2324009747 hasAuthorship W2324009747A5005761034 @default.
- W2324009747 hasAuthorship W2324009747A5051660049 @default.
- W2324009747 hasAuthorship W2324009747A5060182809 @default.
- W2324009747 hasAuthorship W2324009747A5061087485 @default.
- W2324009747 hasAuthorship W2324009747A5090829577 @default.
- W2324009747 hasBestOaLocation W23240097472 @default.
- W2324009747 hasConcept C105795698 @default.
- W2324009747 hasConcept C11413529 @default.
- W2324009747 hasConcept C114466953 @default.
- W2324009747 hasConcept C126255220 @default.
- W2324009747 hasConcept C141379421 @default.
- W2324009747 hasConcept C142362112 @default.
- W2324009747 hasConcept C153180895 @default.
- W2324009747 hasConcept C153349607 @default.
- W2324009747 hasConcept C154945302 @default.
- W2324009747 hasConcept C167928553 @default.
- W2324009747 hasConcept C199360897 @default.
- W2324009747 hasConcept C33923547 @default.
- W2324009747 hasConcept C41008148 @default.
- W2324009747 hasConcept C49781872 @default.
- W2324009747 hasConcept C558565934 @default.
- W2324009747 hasConcept C57493831 @default.
- W2324009747 hasConcept C73301696 @default.
- W2324009747 hasConceptScore W2324009747C105795698 @default.
- W2324009747 hasConceptScore W2324009747C11413529 @default.