Matches in SemOpenAlex for { <https://semopenalex.org/work/W2324054033> ?p ?o ?g. }
- W2324054033 abstract "``Diffuse interface'' theories for single-component fluids---dating back to van der Waals, Korteweg, Cahn-Hilliard, and many others---are currently based upon an ad hoc combination of thermodynamic principles (built largely upon Helmholtz's free-energy potential) and so-called ``nonclassical'' continuum-thermomechanical principles (built largely upon Newtonian mechanics), with the latter originating with the pioneering work of Dunn and Serrin [Arch. Ration. Mech. Anal. 88, 95 (1985)]. By introducing into the equation governing the transport of energy the notion of an interstitial work-flux contribution, above and beyond the usual Fourier heat-flux contribution, namely, ${mathbf{j}}_{q}=ensuremath{-}kensuremath{nabla}T$, to the energy flux, Dunn and Serrin provided a rational continuum-thermomechanical basis for the presence of Korteweg stresses in the equation governing the transport of linear momentum in compressible fluids. Nevertheless, by their failing to recognize the existence and fundamental need for an independent volume transport equation [Brenner, Physica A 349, 11 (2005)]---especially for the roles played therein by the diffuse volume flux ${mathbf{j}}_{v}$ and the rate of production of volume ${ensuremath{pi}}_{v}$ at a point of the fluid continuum---we argue that diffuse interface theories for fluids stand today as being both ad hoc and incomplete owing to their failure to recognize the need for an independent volume transport equation for the case of compressible fluids. In contrast, we point out that bivelocity hydrodynamics, as it already exists [Brenner, Phys. Rev. E 86, 016307 (2012)], provides a rational, non-ad hoc, and comprehensive theory of diffuse interfaces, not only for single-component fluids, but also for certain classes of crystalline solids [Danielewski and Wierzba, J. Phase Equilib. Diffus. 26, 573 (2005)]. Furthermore, we provide not only what we believe to be the correct constitutive equation for the Korteweg stress in the class of fluids that are constitutively Newtonian in their rheological response to imposed stresses but, equally importantly, we establish the explicit functional forms of Korteweg's phenomenological thermocapillary coefficients appearing therein." @default.
- W2324054033 created "2016-06-24" @default.
- W2324054033 creator A5013768472 @default.
- W2324054033 date "2014-04-29" @default.
- W2324054033 modified "2023-09-23" @default.
- W2324054033 title "Conduction-only transport phenomena in compressible bivelocity fluids: Diffuse interfaces and Korteweg stresses" @default.
- W2324054033 cites W1538135945 @default.
- W2324054033 cites W1663357608 @default.
- W2324054033 cites W1966291642 @default.
- W2324054033 cites W1969176456 @default.
- W2324054033 cites W1974332429 @default.
- W2324054033 cites W1976312354 @default.
- W2324054033 cites W1980669778 @default.
- W2324054033 cites W1980880248 @default.
- W2324054033 cites W1986210059 @default.
- W2324054033 cites W1987681149 @default.
- W2324054033 cites W1989271293 @default.
- W2324054033 cites W1996968363 @default.
- W2324054033 cites W1997222196 @default.
- W2324054033 cites W1999442773 @default.
- W2324054033 cites W2000108469 @default.
- W2324054033 cites W2007211826 @default.
- W2324054033 cites W2011697614 @default.
- W2324054033 cites W2014476043 @default.
- W2324054033 cites W2015097798 @default.
- W2324054033 cites W2015727353 @default.
- W2324054033 cites W2018375831 @default.
- W2324054033 cites W2021522188 @default.
- W2324054033 cites W2025997096 @default.
- W2324054033 cites W2028279511 @default.
- W2324054033 cites W2031480521 @default.
- W2324054033 cites W2032334341 @default.
- W2324054033 cites W2033210591 @default.
- W2324054033 cites W2041850330 @default.
- W2324054033 cites W2046528357 @default.
- W2324054033 cites W2047091143 @default.
- W2324054033 cites W2051497316 @default.
- W2324054033 cites W2053782565 @default.
- W2324054033 cites W2054817966 @default.
- W2324054033 cites W2060972325 @default.
- W2324054033 cites W2061899477 @default.
- W2324054033 cites W2063754661 @default.
- W2324054033 cites W2064224650 @default.
- W2324054033 cites W2067143447 @default.
- W2324054033 cites W2067362142 @default.
- W2324054033 cites W2069490876 @default.
- W2324054033 cites W2070045007 @default.
- W2324054033 cites W2072809335 @default.
- W2324054033 cites W2073909504 @default.
- W2324054033 cites W2074078020 @default.
- W2324054033 cites W2074439496 @default.
- W2324054033 cites W2077196808 @default.
- W2324054033 cites W2077523990 @default.
- W2324054033 cites W2079396461 @default.
- W2324054033 cites W2080291202 @default.
- W2324054033 cites W2080990278 @default.
- W2324054033 cites W2081919745 @default.
- W2324054033 cites W2083753224 @default.
- W2324054033 cites W2089977487 @default.
- W2324054033 cites W2091101305 @default.
- W2324054033 cites W2091136144 @default.
- W2324054033 cites W2092367092 @default.
- W2324054033 cites W2100196806 @default.
- W2324054033 cites W2113840106 @default.
- W2324054033 cites W2115807105 @default.
- W2324054033 cites W2126066275 @default.
- W2324054033 cites W2130457461 @default.
- W2324054033 cites W2133733380 @default.
- W2324054033 cites W2137552903 @default.
- W2324054033 cites W2146359766 @default.
- W2324054033 cites W2150930375 @default.
- W2324054033 cites W2313151862 @default.
- W2324054033 cites W2330051323 @default.
- W2324054033 cites W2330957777 @default.
- W2324054033 cites W2331605313 @default.
- W2324054033 cites W236264339 @default.
- W2324054033 cites W2494052166 @default.
- W2324054033 cites W293799436 @default.
- W2324054033 cites W3099713639 @default.
- W2324054033 cites W3102905031 @default.
- W2324054033 cites W3105580332 @default.
- W2324054033 cites W4206489165 @default.
- W2324054033 cites W4213306718 @default.
- W2324054033 cites W4214628711 @default.
- W2324054033 cites W4252293059 @default.
- W2324054033 cites W4299339015 @default.
- W2324054033 cites W599572244 @default.
- W2324054033 doi "https://doi.org/10.1103/physreve.89.043020" @default.
- W2324054033 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24827345" @default.
- W2324054033 hasPublicationYear "2014" @default.
- W2324054033 type Work @default.
- W2324054033 sameAs 2324054033 @default.
- W2324054033 citedByCount "4" @default.
- W2324054033 countsByYear W23240540332017 @default.
- W2324054033 countsByYear W23240540332018 @default.
- W2324054033 countsByYear W23240540332020 @default.
- W2324054033 crossrefType "journal-article" @default.
- W2324054033 hasAuthorship W2324054033A5013768472 @default.
- W2324054033 hasBestOaLocation W23240540332 @default.
- W2324054033 hasConcept C121332964 @default.