Matches in SemOpenAlex for { <https://semopenalex.org/work/W2324132092> ?p ?o ?g. }
- W2324132092 abstract "Big data applications, such as medical imaging and genetics, typically generate datasets that consist of few observations n on many more variables p, a scenario that we denote as p>>n. Traditional data processing methods are often insufficient for extracting information out of big data. This calls for the development of new algorithms that can deal with the size, complexity, and the special structure of such datasets. In this paper, we consider the problem of classifying p>>n data and propose a classification method based on linear discriminant analysis (LDA). Traditional LDA depends on the covariance estimate of the data, but when p>>n the sample covariance estimate is singular. The proposed method estimates the covariance by using a sparse version of noisy principal component analysis (nPCA). The use of sparsity in this setting aims at automatically selecting variables that are relevant for classification. In experiments, the new method is compared to state-of-the art methods for big data problems using both simulated datasets and imaging genetics datasets." @default.
- W2324132092 created "2016-06-24" @default.
- W2324132092 creator A5008277487 @default.
- W2324132092 creator A5052449942 @default.
- W2324132092 creator A5069292094 @default.
- W2324132092 creator A5079644472 @default.
- W2324132092 date "2016-05-16" @default.
- W2324132092 modified "2023-09-23" @default.
- W2324132092 title "Classification of Big Data with Application to Imaging Genetics" @default.
- W2324132092 cites W1480376833 @default.
- W2324132092 cites W1554663460 @default.
- W2324132092 cites W1560724230 @default.
- W2324132092 cites W1635526310 @default.
- W2324132092 cites W194242946 @default.
- W2324132092 cites W1966626540 @default.
- W2324132092 cites W1975285668 @default.
- W2324132092 cites W1975600768 @default.
- W2324132092 cites W1985690171 @default.
- W2324132092 cites W1996352909 @default.
- W2324132092 cites W1997338841 @default.
- W2324132092 cites W2005235480 @default.
- W2324132092 cites W2014668809 @default.
- W2324132092 cites W2020925091 @default.
- W2324132092 cites W2024885974 @default.
- W2324132092 cites W2027717478 @default.
- W2324132092 cites W2046847841 @default.
- W2324132092 cites W2049633694 @default.
- W2324132092 cites W2053061982 @default.
- W2324132092 cites W2053742104 @default.
- W2324132092 cites W2054957239 @default.
- W2324132092 cites W2069552222 @default.
- W2324132092 cites W2074682976 @default.
- W2324132092 cites W2080226171 @default.
- W2324132092 cites W2096710051 @default.
- W2324132092 cites W2098385363 @default.
- W2324132092 cites W2103012833 @default.
- W2324132092 cites W2107726111 @default.
- W2324132092 cites W2107755074 @default.
- W2324132092 cites W2109363337 @default.
- W2324132092 cites W2112796928 @default.
- W2324132092 cites W2115689562 @default.
- W2324132092 cites W2117526678 @default.
- W2324132092 cites W2118250684 @default.
- W2324132092 cites W2121209008 @default.
- W2324132092 cites W2125027820 @default.
- W2324132092 cites W2133958955 @default.
- W2324132092 cites W2135046866 @default.
- W2324132092 cites W2138550913 @default.
- W2324132092 cites W2146435996 @default.
- W2324132092 cites W2147898188 @default.
- W2324132092 cites W2153635508 @default.
- W2324132092 cites W2154068876 @default.
- W2324132092 cites W2155423555 @default.
- W2324132092 cites W2158485497 @default.
- W2324132092 cites W2168175751 @default.
- W2324132092 cites W2168704508 @default.
- W2324132092 cites W2168909179 @default.
- W2324132092 cites W2540258018 @default.
- W2324132092 cites W2911964244 @default.
- W2324132092 cites W2951153209 @default.
- W2324132092 cites W3127611755 @default.
- W2324132092 cites W740415 @default.
- W2324132092 hasPublicationYear "2016" @default.
- W2324132092 type Work @default.
- W2324132092 sameAs 2324132092 @default.
- W2324132092 citedByCount "1" @default.
- W2324132092 countsByYear W23241320922017 @default.
- W2324132092 crossrefType "posted-content" @default.
- W2324132092 hasAuthorship W2324132092A5008277487 @default.
- W2324132092 hasAuthorship W2324132092A5052449942 @default.
- W2324132092 hasAuthorship W2324132092A5069292094 @default.
- W2324132092 hasAuthorship W2324132092A5079644472 @default.
- W2324132092 hasConcept C105795698 @default.
- W2324132092 hasConcept C119857082 @default.
- W2324132092 hasConcept C124101348 @default.
- W2324132092 hasConcept C153180895 @default.
- W2324132092 hasConcept C154945302 @default.
- W2324132092 hasConcept C169760540 @default.
- W2324132092 hasConcept C178650346 @default.
- W2324132092 hasConcept C18183760 @default.
- W2324132092 hasConcept C27438332 @default.
- W2324132092 hasConcept C33923547 @default.
- W2324132092 hasConcept C41008148 @default.
- W2324132092 hasConcept C58693492 @default.
- W2324132092 hasConcept C69738355 @default.
- W2324132092 hasConcept C75684735 @default.
- W2324132092 hasConcept C86803240 @default.
- W2324132092 hasConceptScore W2324132092C105795698 @default.
- W2324132092 hasConceptScore W2324132092C119857082 @default.
- W2324132092 hasConceptScore W2324132092C124101348 @default.
- W2324132092 hasConceptScore W2324132092C153180895 @default.
- W2324132092 hasConceptScore W2324132092C154945302 @default.
- W2324132092 hasConceptScore W2324132092C169760540 @default.
- W2324132092 hasConceptScore W2324132092C178650346 @default.
- W2324132092 hasConceptScore W2324132092C18183760 @default.
- W2324132092 hasConceptScore W2324132092C27438332 @default.
- W2324132092 hasConceptScore W2324132092C33923547 @default.
- W2324132092 hasConceptScore W2324132092C41008148 @default.
- W2324132092 hasConceptScore W2324132092C58693492 @default.
- W2324132092 hasConceptScore W2324132092C69738355 @default.