Matches in SemOpenAlex for { <https://semopenalex.org/work/W2324249282> ?p ?o ?g. }
- W2324249282 endingPage "175" @default.
- W2324249282 startingPage "159" @default.
- W2324249282 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 463:159-175 (2012) - DOI: https://doi.org/10.3354/meps09866 Linking bio-oceanography and population genetics to assess larval connectivity G. Soria1,2,*, A. Munguía-Vega1,3, S. G. Marinone4, M. Moreno-Báez1, I. Martínez-Tovar5, R. Cudney-Bueno1,6 1School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona 85721, USA 2Centro Nacional Patagónico, Boulevard Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina 3Comunidad y Biodiversidad A. C., Colonia Centro, La Paz, Baja California Sur, Mexico 4Departamento de Oceanografía Física, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico 5Centro Intercultural de Estudios de Desiertos y Océanos (CEDO), Puerto Peñasco, Sonora 83550, Mexico 6Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California 95060, USA *Email: gsoria@email.arizona.edu ABSTRACT: Marine reserves (areas closed to fishing) have been advocated for the management of many species, including the rock scallop Spondylus calcifer in the northern Gulf of California (NGC), Mexico. We developed an explicit coupled biological-oceanographic model (CBOM) to assess connectivity among fished subpopulations of S. calcifer. We focused on the Puerto Peñasco corridor, located in the northeastern portion of the NGC. We validated CBOM’s outputs through 2 different techniques: population genetics with 9 microsatellite loci and measurements of spat abundance on artificial collectors. We found strong demographic connectivity between the corridor and southern sources. Sampled localities showed low levels of genetic structure; however, we identified 2 subtly differentiated genetic clusters. On average, the spatial scale of demographic and genetic connectivity is in agreement, suggesting that connectivity decreases when the spatial scale is >100 km. We observed a gradient of higher values of both predicted particles and observed densities of settled spat for the northern and southern sites and lower values for the central sites. Larval recruitment within the corridor could be linked to a large spatial scale of larval inputs, including local sources and subpopulations further south. The absence of a strong barrier to migration suggests that the siting of marine reserves along upstream sites would likely benefit downstream subpopulations. The spatial scale of connectivity (~100 km) could be used as a reference for the strategic siting of marine reserves in the study area. CBOMs and population genetics are powerful complementary tools to assess the relative strength of connectivity among sites. KEY WORDS: Spondylus calcifer · Larval dispersal · Genetic structure · Marine reserves · Gulf of California Full text in pdf format PreviousNextCite this article as: Soria G, Munguía-Vega A, Marinone SG, Moreno-Báez M, Martínez-Tovar I, Cudney-Bueno R (2012) Linking bio-oceanography and population genetics to assess larval connectivity. Mar Ecol Prog Ser 463:159-175. https://doi.org/10.3354/meps09866 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 463. Online publication date: August 30, 2012 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2012 Inter-Research." @default.
- W2324249282 created "2016-06-24" @default.
- W2324249282 creator A5032902867 @default.
- W2324249282 creator A5043563984 @default.
- W2324249282 creator A5053472076 @default.
- W2324249282 creator A5053813010 @default.
- W2324249282 creator A5063315387 @default.
- W2324249282 creator A5074305858 @default.
- W2324249282 date "2012-08-30" @default.
- W2324249282 modified "2023-10-16" @default.
- W2324249282 title "Linking bio-oceanography and population genetics to assess larval connectivity" @default.
- W2324249282 cites W1516659721 @default.
- W2324249282 cites W1527153211 @default.
- W2324249282 cites W1529420429 @default.
- W2324249282 cites W1532648630 @default.
- W2324249282 cites W1633688888 @default.
- W2324249282 cites W1832287255 @default.
- W2324249282 cites W1946856663 @default.
- W2324249282 cites W1974322382 @default.
- W2324249282 cites W1978564594 @default.
- W2324249282 cites W1982854706 @default.
- W2324249282 cites W1988451136 @default.
- W2324249282 cites W1995587391 @default.
- W2324249282 cites W1995990881 @default.
- W2324249282 cites W1998018547 @default.
- W2324249282 cites W2004444667 @default.
- W2324249282 cites W2022798280 @default.
- W2324249282 cites W2036975006 @default.
- W2324249282 cites W2044147627 @default.
- W2324249282 cites W2060444000 @default.
- W2324249282 cites W2060488587 @default.
- W2324249282 cites W2060891246 @default.
- W2324249282 cites W2061744670 @default.
- W2324249282 cites W2062424176 @default.
- W2324249282 cites W2064558159 @default.
- W2324249282 cites W2067253669 @default.
- W2324249282 cites W2071224479 @default.
- W2324249282 cites W2074303633 @default.
- W2324249282 cites W2074589320 @default.
- W2324249282 cites W2075221611 @default.
- W2324249282 cites W2080263571 @default.
- W2324249282 cites W2085643757 @default.
- W2324249282 cites W2087673978 @default.
- W2324249282 cites W2088552411 @default.
- W2324249282 cites W2093759002 @default.
- W2324249282 cites W2097565750 @default.
- W2324249282 cites W2098126593 @default.
- W2324249282 cites W2103374627 @default.
- W2324249282 cites W2106791022 @default.
- W2324249282 cites W2114709340 @default.
- W2324249282 cites W2120962599 @default.
- W2324249282 cites W2133999074 @default.
- W2324249282 cites W2137452046 @default.
- W2324249282 cites W2137948385 @default.
- W2324249282 cites W2138012129 @default.
- W2324249282 cites W2139838209 @default.
- W2324249282 cites W2140618008 @default.
- W2324249282 cites W2148255060 @default.
- W2324249282 cites W2150850312 @default.
- W2324249282 cites W2152438064 @default.
- W2324249282 cites W2153357393 @default.
- W2324249282 cites W2158489424 @default.
- W2324249282 cites W2160157055 @default.
- W2324249282 cites W2161339576 @default.
- W2324249282 cites W2167191077 @default.
- W2324249282 cites W2169359815 @default.
- W2324249282 cites W2170061979 @default.
- W2324249282 cites W2171730627 @default.
- W2324249282 cites W2321233759 @default.
- W2324249282 cites W2321695758 @default.
- W2324249282 cites W2328454750 @default.
- W2324249282 cites W4245598032 @default.
- W2324249282 doi "https://doi.org/10.3354/meps09866" @default.
- W2324249282 hasPublicationYear "2012" @default.
- W2324249282 type Work @default.
- W2324249282 sameAs 2324249282 @default.
- W2324249282 citedByCount "32" @default.
- W2324249282 countsByYear W23242492822013 @default.
- W2324249282 countsByYear W23242492822014 @default.
- W2324249282 countsByYear W23242492822015 @default.
- W2324249282 countsByYear W23242492822016 @default.
- W2324249282 countsByYear W23242492822017 @default.
- W2324249282 countsByYear W23242492822018 @default.
- W2324249282 countsByYear W23242492822020 @default.
- W2324249282 countsByYear W23242492822021 @default.
- W2324249282 countsByYear W23242492822022 @default.
- W2324249282 crossrefType "journal-article" @default.
- W2324249282 hasAuthorship W2324249282A5032902867 @default.
- W2324249282 hasAuthorship W2324249282A5043563984 @default.
- W2324249282 hasAuthorship W2324249282A5053472076 @default.
- W2324249282 hasAuthorship W2324249282A5053813010 @default.
- W2324249282 hasAuthorship W2324249282A5063315387 @default.
- W2324249282 hasAuthorship W2324249282A5074305858 @default.
- W2324249282 hasBestOaLocation W23242492821 @default.
- W2324249282 hasConcept C111368507 @default.
- W2324249282 hasConcept C127313418 @default.
- W2324249282 hasConcept C144024400 @default.
- W2324249282 hasConcept C149923435 @default.