Matches in SemOpenAlex for { <https://semopenalex.org/work/W2324252002> ?p ?o ?g. }
- W2324252002 endingPage "478" @default.
- W2324252002 startingPage "469" @default.
- W2324252002 abstract "Over the past 25 years, microwave (MW) chemistry has moved from a laboratory curiosity to a well-established synthetic technique used in many academic and industrial laboratories around the world. Although the overwhelming number of MW-assisted applications today are still performed on a laboratory (mL) scale, we expect that this enabling technology may be used on a larger, perhaps even production, scale in conjunction with radio frequency or conventional heating.Microwave chemistry is based on two main principles, the dipolar mechanism and the electrical conductor mechanism. The dipolar mechanism occurs when, under a very high frequency electric field, a polar molecule attempts to follow the field in the same alignment. When this happens, the molecules release enough heat to drive the reaction forward. In the second mechanism, the irradiated sample is an electrical conductor and the charge carriers, ions and electrons, move through the material under the influence of the electric field and lead to polarization within the sample. These induced currents and any electrical resistance will heat the sample.This Account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Researchers have successfully demonstrated the application of this method in the preparation of silver (Ag), gold (Au), platinum (Pt), and gold–palladium (Au–Pd) nanostructures. MW heating conditions allow not only for the preparation of spherical nanoparticles within a few minutes but also for the formation of single crystalline polygonal plates, sheets, rods, wires, tubes, and dendrites. The morphologies and sizes of the nanostructures can be controlled by changing various experimental parameters, such as the concentration of metallic salt precursors, the surfactant polymers, the chain length of the surfactant polymers, the solvents, and the operation reaction temperature. In general, nanostructures with smaller sizes, narrower size distributions, and a higher degree of crystallization have been obtained more consistently via MW heating than by heating with a conventional oil-bath. The use of microwaves to heat samples is a viable avenue for the greener synthesis of nanomaterials and provides several desirable features such as shorter reaction times, reduced energy consumption, and better product yields." @default.
- W2324252002 created "2016-06-24" @default.
- W2324252002 creator A5009303312 @default.
- W2324252002 creator A5015300255 @default.
- W2324252002 creator A5037475526 @default.
- W2324252002 date "2011-04-28" @default.
- W2324252002 modified "2023-09-30" @default.
- W2324252002 title "Microwave-Assisted Green Synthesis of Silver Nanostructures" @default.
- W2324252002 cites W1929569495 @default.
- W2324252002 cites W1963819369 @default.
- W2324252002 cites W1965669701 @default.
- W2324252002 cites W1967361160 @default.
- W2324252002 cites W1967685657 @default.
- W2324252002 cites W1967725502 @default.
- W2324252002 cites W1967910677 @default.
- W2324252002 cites W1970123720 @default.
- W2324252002 cites W1970733295 @default.
- W2324252002 cites W1971702271 @default.
- W2324252002 cites W1975906170 @default.
- W2324252002 cites W1977896677 @default.
- W2324252002 cites W1981911740 @default.
- W2324252002 cites W1982902114 @default.
- W2324252002 cites W1982924681 @default.
- W2324252002 cites W1984952945 @default.
- W2324252002 cites W1986489588 @default.
- W2324252002 cites W1989450441 @default.
- W2324252002 cites W1989498408 @default.
- W2324252002 cites W1991647864 @default.
- W2324252002 cites W1992252010 @default.
- W2324252002 cites W1997779320 @default.
- W2324252002 cites W1997925055 @default.
- W2324252002 cites W2001144724 @default.
- W2324252002 cites W2003484235 @default.
- W2324252002 cites W2003809722 @default.
- W2324252002 cites W2007297983 @default.
- W2324252002 cites W2007569098 @default.
- W2324252002 cites W2010420024 @default.
- W2324252002 cites W2011596219 @default.
- W2324252002 cites W2017173260 @default.
- W2324252002 cites W2018462809 @default.
- W2324252002 cites W2026263296 @default.
- W2324252002 cites W2032580050 @default.
- W2324252002 cites W2032734313 @default.
- W2324252002 cites W2034137439 @default.
- W2324252002 cites W2035748476 @default.
- W2324252002 cites W2036347394 @default.
- W2324252002 cites W2038131751 @default.
- W2324252002 cites W2039486383 @default.
- W2324252002 cites W2041903296 @default.
- W2324252002 cites W2042871087 @default.
- W2324252002 cites W2044189690 @default.
- W2324252002 cites W2044751381 @default.
- W2324252002 cites W2047145687 @default.
- W2324252002 cites W2050812474 @default.
- W2324252002 cites W2050967825 @default.
- W2324252002 cites W2056537679 @default.
- W2324252002 cites W2058840004 @default.
- W2324252002 cites W2060776074 @default.
- W2324252002 cites W2076763166 @default.
- W2324252002 cites W2080086379 @default.
- W2324252002 cites W2084476963 @default.
- W2324252002 cites W2088354065 @default.
- W2324252002 cites W2088823715 @default.
- W2324252002 cites W2090939257 @default.
- W2324252002 cites W2094396732 @default.
- W2324252002 cites W2095560762 @default.
- W2324252002 cites W2106192254 @default.
- W2324252002 cites W2114608954 @default.
- W2324252002 cites W2122711107 @default.
- W2324252002 cites W2123021412 @default.
- W2324252002 cites W2163709609 @default.
- W2324252002 cites W2172257351 @default.
- W2324252002 cites W2338408126 @default.
- W2324252002 cites W4254733677 @default.
- W2324252002 doi "https://doi.org/10.1021/ar1001457" @default.
- W2324252002 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21526846" @default.
- W2324252002 hasPublicationYear "2011" @default.
- W2324252002 type Work @default.
- W2324252002 sameAs 2324252002 @default.
- W2324252002 citedByCount "412" @default.
- W2324252002 countsByYear W23242520022012 @default.
- W2324252002 countsByYear W23242520022013 @default.
- W2324252002 countsByYear W23242520022014 @default.
- W2324252002 countsByYear W23242520022015 @default.
- W2324252002 countsByYear W23242520022016 @default.
- W2324252002 countsByYear W23242520022017 @default.
- W2324252002 countsByYear W23242520022018 @default.
- W2324252002 countsByYear W23242520022019 @default.
- W2324252002 countsByYear W23242520022020 @default.
- W2324252002 countsByYear W23242520022021 @default.
- W2324252002 countsByYear W23242520022022 @default.
- W2324252002 countsByYear W23242520022023 @default.
- W2324252002 crossrefType "journal-article" @default.
- W2324252002 hasAuthorship W2324252002A5009303312 @default.
- W2324252002 hasAuthorship W2324252002A5015300255 @default.
- W2324252002 hasAuthorship W2324252002A5037475526 @default.
- W2324252002 hasConcept C121332964 @default.
- W2324252002 hasConcept C133386390 @default.