Matches in SemOpenAlex for { <https://semopenalex.org/work/W2324450140> ?p ?o ?g. }
- W2324450140 endingPage "3272" @default.
- W2324450140 startingPage "3261" @default.
- W2324450140 abstract "Sparse representation has shown its merits in solving some classification problems and delivered some impressive results in face recognition. However, the unsupervised optimization of the sparse representation may result in undesired classification outcome if the variations of the data population are not well represented by the training samples. In this paper, a method of class-wise sparse representation (CSR) is proposed to tackle the problems of the conventional sample-wise sparse representation and applied to face recognition. It seeks an optimum representation of the query image by minimizing the class-wise sparsity of the training data. To tackle the problem of the uncontrolled training data, this paper further proposes a collaborative patch (CP) framework, together with the proposed CSR, named CSR-CP. Different from the conventional patch-based methods that optimize each patch representation separately, the CSR-CP approach optimizes all patches together to seek a CP groupwise sparse representation by putting all patches of an image into a group. It alleviates the problem of losing discriminative information in the training data caused by the partition of the image into patches. Extensive experiments on several benchmark face databases demonstrate that the proposed CSR-CP significantly outperforms the sparse representation-related holistic and patch-based approaches." @default.
- W2324450140 created "2016-06-24" @default.
- W2324450140 creator A5015170424 @default.
- W2324450140 creator A5085533260 @default.
- W2324450140 date "2016-07-01" @default.
- W2324450140 modified "2023-09-25" @default.
- W2324450140 title "Classwise Sparse and Collaborative Patch Representation for Face Recognition" @default.
- W2324450140 cites W1529297639 @default.
- W2324450140 cites W1970882497 @default.
- W2324450140 cites W1975815261 @default.
- W2324450140 cites W1981955204 @default.
- W2324450140 cites W1982405594 @default.
- W2324450140 cites W1988805924 @default.
- W2324450140 cites W1992405901 @default.
- W2324450140 cites W1992734222 @default.
- W2324450140 cites W1997201895 @default.
- W2324450140 cites W2003217181 @default.
- W2324450140 cites W2006262045 @default.
- W2324450140 cites W2006793117 @default.
- W2324450140 cites W2011503867 @default.
- W2324450140 cites W2027922120 @default.
- W2324450140 cites W2033241812 @default.
- W2324450140 cites W2048262339 @default.
- W2324450140 cites W2050834445 @default.
- W2324450140 cites W2050849575 @default.
- W2324450140 cites W2052446636 @default.
- W2324450140 cites W2069959554 @default.
- W2324450140 cites W2070127246 @default.
- W2324450140 cites W2075779886 @default.
- W2324450140 cites W2083505310 @default.
- W2324450140 cites W2084716923 @default.
- W2324450140 cites W2093922090 @default.
- W2324450140 cites W2097486709 @default.
- W2324450140 cites W2098947662 @default.
- W2324450140 cites W2099474347 @default.
- W2324450140 cites W2100281586 @default.
- W2324450140 cites W2100556411 @default.
- W2324450140 cites W2102460275 @default.
- W2324450140 cites W2104908641 @default.
- W2324450140 cites W2118312744 @default.
- W2324450140 cites W2120100419 @default.
- W2324450140 cites W2121647436 @default.
- W2324450140 cites W2122825543 @default.
- W2324450140 cites W2125742596 @default.
- W2324450140 cites W2125874614 @default.
- W2324450140 cites W2129812935 @default.
- W2324450140 cites W2137823674 @default.
- W2324450140 cites W2138019504 @default.
- W2324450140 cites W2138451337 @default.
- W2324450140 cites W2144583419 @default.
- W2324450140 cites W2145962650 @default.
- W2324450140 cites W2146076056 @default.
- W2324450140 cites W2154189032 @default.
- W2324450140 cites W2164452299 @default.
- W2324450140 cites W2164853747 @default.
- W2324450140 cites W2165554381 @default.
- W2324450140 cites W2165916500 @default.
- W2324450140 cites W2166344663 @default.
- W2324450140 cites W2166346115 @default.
- W2324450140 cites W2166469867 @default.
- W2324450140 cites W2167601730 @default.
- W2324450140 cites W2912990735 @default.
- W2324450140 cites W2963689635 @default.
- W2324450140 cites W3100830527 @default.
- W2324450140 cites W3148981562 @default.
- W2324450140 doi "https://doi.org/10.1109/tip.2016.2545249" @default.
- W2324450140 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28113851" @default.
- W2324450140 hasPublicationYear "2016" @default.
- W2324450140 type Work @default.
- W2324450140 sameAs 2324450140 @default.
- W2324450140 citedByCount "44" @default.
- W2324450140 countsByYear W23244501402016 @default.
- W2324450140 countsByYear W23244501402017 @default.
- W2324450140 countsByYear W23244501402018 @default.
- W2324450140 countsByYear W23244501402019 @default.
- W2324450140 countsByYear W23244501402020 @default.
- W2324450140 countsByYear W23244501402021 @default.
- W2324450140 countsByYear W23244501402022 @default.
- W2324450140 countsByYear W23244501402023 @default.
- W2324450140 crossrefType "journal-article" @default.
- W2324450140 hasAuthorship W2324450140A5015170424 @default.
- W2324450140 hasAuthorship W2324450140A5085533260 @default.
- W2324450140 hasConcept C119857082 @default.
- W2324450140 hasConcept C124066611 @default.
- W2324450140 hasConcept C13280743 @default.
- W2324450140 hasConcept C144024400 @default.
- W2324450140 hasConcept C153180895 @default.
- W2324450140 hasConcept C154945302 @default.
- W2324450140 hasConcept C17744445 @default.
- W2324450140 hasConcept C185798385 @default.
- W2324450140 hasConcept C199539241 @default.
- W2324450140 hasConcept C205649164 @default.
- W2324450140 hasConcept C2776359362 @default.
- W2324450140 hasConcept C2777212361 @default.
- W2324450140 hasConcept C2779304628 @default.
- W2324450140 hasConcept C31510193 @default.
- W2324450140 hasConcept C36289849 @default.
- W2324450140 hasConcept C41008148 @default.