Matches in SemOpenAlex for { <https://semopenalex.org/work/W2324555333> ?p ?o ?g. }
- W2324555333 endingPage "5133" @default.
- W2324555333 startingPage "5125" @default.
- W2324555333 abstract "A novel surface modification method was investigated. The surface of siliceous materials was modified using polystyrene, poly(acrylic acid), poly(N-isopropylacrylamide), and poly(p-acrylamidophenyl-α-mannoside) synthesized by reversible addition-fragmentation chain transfer polymerization. Thiol-terminated polymers were obtained by reduction of the thiocarbonate group using sodium borohydride. The polymers were immobilized on the surface via the thiol-ene click reaction, known as the Michael addition reaction. Immobilization of the polymers on the maleimidated surface was confirmed by X-ray photoelectron spectroscopy, infrared spectroscopy, and contact angle measurements. The polymer-immobilized surfaces were observed by atomic force microscopy, and the thickness of the polymer layers was determined by ellipsometry. The thickness of the polymer immobilized by the maleimide-thiol reaction was less than that formed by spin coating, except for polystyrene. Moreover, the polymer-immobilized surfaces were relatively smooth with a roughness of less than 1 nm. The amounts of amine, maleimide, and polymer immobilized on the surface were determined by quartz crystal microbalance measurements. The area occupied by the amine-containing silane coupling reagent was significantly less than the theoretical value, suggesting that a multilayer of the silane coupling reagent was formed on the surface. The polymer with low molecular weight had the tendency to efficiently immobilize on the maleimidated surface. When poly(p-acrylamidophenyl-α-mannoside)-immobilized surfaces were used as a platform for protein microarrays, strong interactions were detected with the mannose-binding lectin concanavalin A. The specificity of poly(p-acrylamidophenyl-α-mannoside)-immobilized surfaces for concanavalin A was compared with poly-l-lysine-coated surfaces. The poly-l-lysine-coated surfaces nonspecifically adsorbed both concanavalin A and bovine serum albumin, while the poly(p-acrylamidophenyl-α-mannoside)-immobilized surface preferentially adsorbed concanavalin A. Moreover, the poly(p-acrylamidophenyl-α-mannoside)-immobilized surface was applied to micropatterning with photolithography. When the micropattern was formed on the poly(p-acrylamidophenyl-α-mannoside)-spin-coated surface by irradiation with ultraviolet light, the pattern of the masking design was not observed on the surface adsorbed with fluorophore-labeled concanavalin A using a fluorescent microscope because of elution of poly(p-acrylamidophenyl-α-mannoside) from the surface. In contrast, fluorophore-labeled concanavalin A was only adsorbed on the shaded region of the poly(p-acrylamidophenyl-α-mannoside)-immobilized surface, resulting in a distinctive fluorescent pattern. The surface modification method using maleimidation and reversible addition-fragmentation chain transfer polymerization can be used for preparing platforms for microarrays and micropatterning of proteins." @default.
- W2324555333 created "2016-06-24" @default.
- W2324555333 creator A5002964818 @default.
- W2324555333 creator A5008059619 @default.
- W2324555333 creator A5015883494 @default.
- W2324555333 creator A5051127358 @default.
- W2324555333 creator A5061667335 @default.
- W2324555333 creator A5073097093 @default.
- W2324555333 creator A5090758541 @default.
- W2324555333 date "2012-10-09" @default.
- W2324555333 modified "2023-09-26" @default.
- W2324555333 title "Surface Modification of Siliceous Materials Using Maleimidation and Various Functional Polymers Synthesized by Reversible Addition–Fragmentation Chain Transfer Polymerization" @default.
- W2324555333 cites W1971809936 @default.
- W2324555333 cites W1973350159 @default.
- W2324555333 cites W1988172714 @default.
- W2324555333 cites W1990686212 @default.
- W2324555333 cites W1995279903 @default.
- W2324555333 cites W1995755602 @default.
- W2324555333 cites W1995948163 @default.
- W2324555333 cites W1998182981 @default.
- W2324555333 cites W2004255546 @default.
- W2324555333 cites W2005877813 @default.
- W2324555333 cites W2009412596 @default.
- W2324555333 cites W2010838991 @default.
- W2324555333 cites W2017061145 @default.
- W2324555333 cites W2018277210 @default.
- W2324555333 cites W2020224983 @default.
- W2324555333 cites W2022597672 @default.
- W2324555333 cites W2025982845 @default.
- W2324555333 cites W2028414274 @default.
- W2324555333 cites W2028604075 @default.
- W2324555333 cites W2030308927 @default.
- W2324555333 cites W2030835372 @default.
- W2324555333 cites W2031788190 @default.
- W2324555333 cites W2032736963 @default.
- W2324555333 cites W2041671510 @default.
- W2324555333 cites W2043503621 @default.
- W2324555333 cites W2046237591 @default.
- W2324555333 cites W2048765821 @default.
- W2324555333 cites W2052400527 @default.
- W2324555333 cites W2055863963 @default.
- W2324555333 cites W2056648038 @default.
- W2324555333 cites W2057241437 @default.
- W2324555333 cites W2060890486 @default.
- W2324555333 cites W2069120999 @default.
- W2324555333 cites W2085738178 @default.
- W2324555333 cites W2093174502 @default.
- W2324555333 cites W2104018884 @default.
- W2324555333 cites W2112249007 @default.
- W2324555333 cites W2153482558 @default.
- W2324555333 cites W2171464227 @default.
- W2324555333 cites W2320055301 @default.
- W2324555333 cites W4211011604 @default.
- W2324555333 doi "https://doi.org/10.1021/am301637q" @default.
- W2324555333 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23013607" @default.
- W2324555333 hasPublicationYear "2012" @default.
- W2324555333 type Work @default.
- W2324555333 sameAs 2324555333 @default.
- W2324555333 citedByCount "28" @default.
- W2324555333 countsByYear W23245553332013 @default.
- W2324555333 countsByYear W23245553332014 @default.
- W2324555333 countsByYear W23245553332015 @default.
- W2324555333 countsByYear W23245553332016 @default.
- W2324555333 countsByYear W23245553332017 @default.
- W2324555333 countsByYear W23245553332018 @default.
- W2324555333 countsByYear W23245553332019 @default.
- W2324555333 countsByYear W23245553332020 @default.
- W2324555333 countsByYear W23245553332021 @default.
- W2324555333 countsByYear W23245553332022 @default.
- W2324555333 crossrefType "journal-article" @default.
- W2324555333 hasAuthorship W2324555333A5002964818 @default.
- W2324555333 hasAuthorship W2324555333A5008059619 @default.
- W2324555333 hasAuthorship W2324555333A5015883494 @default.
- W2324555333 hasAuthorship W2324555333A5051127358 @default.
- W2324555333 hasAuthorship W2324555333A5061667335 @default.
- W2324555333 hasAuthorship W2324555333A5073097093 @default.
- W2324555333 hasAuthorship W2324555333A5090758541 @default.
- W2324555333 hasConcept C111998727 @default.
- W2324555333 hasConcept C115537861 @default.
- W2324555333 hasConcept C121120078 @default.
- W2324555333 hasConcept C127413603 @default.
- W2324555333 hasConcept C150394285 @default.
- W2324555333 hasConcept C159985019 @default.
- W2324555333 hasConcept C178790620 @default.
- W2324555333 hasConcept C185592680 @default.
- W2324555333 hasConcept C188027245 @default.
- W2324555333 hasConcept C191897082 @default.
- W2324555333 hasConcept C192562407 @default.
- W2324555333 hasConcept C2777922577 @default.
- W2324555333 hasConcept C2778024649 @default.
- W2324555333 hasConcept C2779248272 @default.
- W2324555333 hasConcept C2780105360 @default.
- W2324555333 hasConcept C42360764 @default.
- W2324555333 hasConcept C44228677 @default.
- W2324555333 hasConcept C521977710 @default.
- W2324555333 hasConcept C544956773 @default.
- W2324555333 hasConcept C6556556 @default.
- W2324555333 hasConcept C9996572 @default.