Matches in SemOpenAlex for { <https://semopenalex.org/work/W2324610862> ?p ?o ?g. }
- W2324610862 endingPage "2382" @default.
- W2324610862 startingPage "2373" @default.
- W2324610862 abstract "An effective calibration model of biodiesel fuel properties prediction, based on near-infrared (NIR) spectroscopy data and an artificial neural network (ANN), was built. Biodiesel samples were derived from multiple sources and prepared using multiple experimental parameters. Four different fuel properties, including fractional composition, were accurately predicted. The root-mean-square errors of prediction (RMSEPs) on an independent sample sets for the end boiling point (50% v/v), the end boiling point (90% v/v), the iodide value, and the cold filter plugging point were 1.73 °C, 1.78 °C, 0.90 g I2/100 g, and 0.77 °C, respectively. Multiple linear regression (MLR), principal component regression (PCR), partial least-squares (projection to latent structures, PLS) regression, (kernel) polynomial and spline versions of partial least-squares regression (Poly-PLS and Spline-PLS), and ANNs were compared for the prediction of biodiesel properties. Data preprocessing techniques and calibration model parameters were independently optimized for each case. The ANN approach was superior to the linear (MLR, PCR, and PLS) and “quasi”-nonlinear (Poly-PLS and Spline-PLS) calibration methods. The ANN approach was a factor of 7.5 ± 1.9 more efficient than MLR and a factor of 2.6 ± 0.9 more efficient than PLS (according to RMSEP ratios). We confirmed that biodiesel is a highly “nonlinear” object. Nine data pretreatment (preprocessing) methods (mean centering, mean scattering correction, standard normal variate, Savitzky–Golay derivatives, range scaling, etc.) were tested. The first/second-order Savitzky–Golay derivative, followed by Mean Centering plus Orthogonal Signal Correction, was found to be effective for biodiesel NIR data preprocessing." @default.
- W2324610862 created "2016-06-24" @default.
- W2324610862 creator A5039398234 @default.
- W2324610862 creator A5074125065 @default.
- W2324610862 date "2011-05-03" @default.
- W2324610862 modified "2023-09-27" @default.
- W2324610862 title "Near-Infrared (NIR) Spectroscopy for Biodiesel Analysis: Fractional Composition, Iodine Value, and Cold Filter Plugging Point from One Vibrational Spectrum" @default.
- W2324610862 cites W1965747377 @default.
- W2324610862 cites W1975579196 @default.
- W2324610862 cites W1977063937 @default.
- W2324610862 cites W1980986247 @default.
- W2324610862 cites W1985147596 @default.
- W2324610862 cites W1988975411 @default.
- W2324610862 cites W1990992764 @default.
- W2324610862 cites W1994917514 @default.
- W2324610862 cites W2000023689 @default.
- W2324610862 cites W2000866396 @default.
- W2324610862 cites W2003669114 @default.
- W2324610862 cites W2004280245 @default.
- W2324610862 cites W2005141612 @default.
- W2324610862 cites W2005248543 @default.
- W2324610862 cites W2006959544 @default.
- W2324610862 cites W2008467957 @default.
- W2324610862 cites W2014609272 @default.
- W2324610862 cites W2014638889 @default.
- W2324610862 cites W2015099192 @default.
- W2324610862 cites W2017427985 @default.
- W2324610862 cites W2019653773 @default.
- W2324610862 cites W2021692195 @default.
- W2324610862 cites W2022075256 @default.
- W2324610862 cites W2024509774 @default.
- W2324610862 cites W2029850555 @default.
- W2324610862 cites W2030490165 @default.
- W2324610862 cites W2030813953 @default.
- W2324610862 cites W2032143007 @default.
- W2324610862 cites W2034927860 @default.
- W2324610862 cites W2035912401 @default.
- W2324610862 cites W2037737734 @default.
- W2324610862 cites W2037824009 @default.
- W2324610862 cites W2039009931 @default.
- W2324610862 cites W2040019138 @default.
- W2324610862 cites W2040654145 @default.
- W2324610862 cites W2042880492 @default.
- W2324610862 cites W2043903053 @default.
- W2324610862 cites W2046130539 @default.
- W2324610862 cites W2048329756 @default.
- W2324610862 cites W2048497457 @default.
- W2324610862 cites W2050378178 @default.
- W2324610862 cites W2053169767 @default.
- W2324610862 cites W2057892688 @default.
- W2324610862 cites W2064816673 @default.
- W2324610862 cites W2066487539 @default.
- W2324610862 cites W2069328240 @default.
- W2324610862 cites W2070218266 @default.
- W2324610862 cites W2076004072 @default.
- W2324610862 cites W2076386261 @default.
- W2324610862 cites W2081414341 @default.
- W2324610862 cites W2081935039 @default.
- W2324610862 cites W2083428849 @default.
- W2324610862 cites W2086654639 @default.
- W2324610862 cites W2087232318 @default.
- W2324610862 cites W2089455543 @default.
- W2324610862 cites W2089886615 @default.
- W2324610862 cites W2091572079 @default.
- W2324610862 cites W2094083365 @default.
- W2324610862 cites W2094902234 @default.
- W2324610862 cites W2095274773 @default.
- W2324610862 cites W2096970468 @default.
- W2324610862 cites W2124803731 @default.
- W2324610862 cites W2133938857 @default.
- W2324610862 cites W2135881999 @default.
- W2324610862 cites W2140196823 @default.
- W2324610862 cites W2146086675 @default.
- W2324610862 cites W2148028862 @default.
- W2324610862 cites W2151029520 @default.
- W2324610862 cites W2153922477 @default.
- W2324610862 cites W2159959568 @default.
- W2324610862 cites W2322358782 @default.
- W2324610862 cites W4211171297 @default.
- W2324610862 cites W4230322334 @default.
- W2324610862 cites W4253169942 @default.
- W2324610862 doi "https://doi.org/10.1021/ef200356h" @default.
- W2324610862 hasPublicationYear "2011" @default.
- W2324610862 type Work @default.
- W2324610862 sameAs 2324610862 @default.
- W2324610862 citedByCount "58" @default.
- W2324610862 countsByYear W23246108622012 @default.
- W2324610862 countsByYear W23246108622013 @default.
- W2324610862 countsByYear W23246108622014 @default.
- W2324610862 countsByYear W23246108622015 @default.
- W2324610862 countsByYear W23246108622016 @default.
- W2324610862 countsByYear W23246108622017 @default.
- W2324610862 countsByYear W23246108622018 @default.
- W2324610862 countsByYear W23246108622019 @default.
- W2324610862 countsByYear W23246108622020 @default.
- W2324610862 countsByYear W23246108622021 @default.
- W2324610862 countsByYear W23246108622022 @default.
- W2324610862 crossrefType "journal-article" @default.