Matches in SemOpenAlex for { <https://semopenalex.org/work/W2324990129> ?p ?o ?g. }
- W2324990129 endingPage "660" @default.
- W2324990129 startingPage "654" @default.
- W2324990129 abstract "The ability to estimate tissue perfusion (in milliliter per minute per gram) in vivo using contrast-enhanced 3-dimensional (3D) harmonic and subharmonic ultrasound imaging was investigated.A LOGIQ™ 9 scanner (GE Healthcare, Milwaukee, WI) equipped with a 4D10L probe was modified to perform 3D harmonic imaging (HI; f(transmit), 5 MHz and f(receive), 10 MHz) and subharmonic imaging (SHI; f(transmit), 5.8 MHz and f(receive), 2.9 MHz). In vivo imaging was performed in the lower pole of both kidneys in 5 open-abdomen canines after injection of the ultrasound contrast agent (UCA) Definity (Lantheus Medical Imaging, N Billerica, MA). The canines received a 5-μL/kg bolus injection of Definity for HI and a 20-μL/kg bolus for SHI in triplicate for each kidney. Ultrasound data acquisition was started just before the injection of UCA (to capture the wash-in) and continued until washout. A microvascular staining technique based on stable (nonradioactive) isotope-labeled microspheres (Biophysics Assay Laboratory, Inc, Worcester, MA) was used to quantify the degree of perfusion in each kidney (the reference standard). Ligating a surgically exposed branch of the renal arteries induced lower perfusion rates. This was followed by additional contrast-enhanced imaging and microsphere injections to measure post-ligation perfusion. Slice data were extracted from the 3D ultrasound volumes and used to generate time-intensity curves offline in the regions corresponding to the tissue samples used for microvascular staining. The midline plane was also selected from the 3D volume (as a quasi-2-dimensional [2D] image) and compared with the 3D imaging modes. Perfusion was estimated from the initial slope of the fractional blood volume uptake (for both HI and SHI) and compared with the reference standard using linear regression analysis.Both 3D HI and SHI were able to provide visualization of flow and, thus, perfusion in the kidneys. However, SHI provided near-complete tissue suppression and improved visualization of the UCA flow. Microsphere perfusion data were available for 4 canines (1 was excluded because of an error with the reference blood sample) and showed a mean (SD) perfusion of 9.30 (6.60) and 5.15 (3.42) mL/min per gram before and after the ligation, respectively. The reference standard showed significant correlation with the overall 3D HI perfusion estimates (r = 0.38; P = 0.007), but it correlated more strongly with 3D SHI (r = 0.62; P < 0.001). In addition, these results showed an improvement over the quasi-2D HI and SHI perfusion estimates (r = -0.05 and r = 0.14) and 2D SHI perfusion estimates previously reported by our group (r = 0.57).In this preliminary study, 3D contrast-enhanced nonlinear ultrasound was able to quantify perfusion in vivo. Three-dimensional SHI resulted in better overall agreement with the reference standard than 3D HI did and was superior to previously reported 2D SHI results. Three-dimensional SHI outperforms the other methods for estimating blood perfusion because of the improved visualization of the complete perfused vascular networks." @default.
- W2324990129 created "2016-06-24" @default.
- W2324990129 creator A5012996264 @default.
- W2324990129 creator A5027935558 @default.
- W2324990129 creator A5038862540 @default.
- W2324990129 creator A5045644653 @default.
- W2324990129 creator A5065313620 @default.
- W2324990129 creator A5067260056 @default.
- W2324990129 creator A5067330326 @default.
- W2324990129 creator A5069506427 @default.
- W2324990129 creator A5072024057 @default.
- W2324990129 creator A5075656142 @default.
- W2324990129 creator A5077965074 @default.
- W2324990129 creator A5079338526 @default.
- W2324990129 creator A5085763119 @default.
- W2324990129 date "2013-09-01" @default.
- W2324990129 modified "2023-09-25" @default.
- W2324990129 title "Perfusion Estimation Using Contrast-Enhanced 3-dimensional Subharmonic Ultrasound Imaging" @default.
- W2324990129 cites W1964383077 @default.
- W2324990129 cites W1966940399 @default.
- W2324990129 cites W1969244169 @default.
- W2324990129 cites W1975611796 @default.
- W2324990129 cites W1979307183 @default.
- W2324990129 cites W1979564603 @default.
- W2324990129 cites W1980591570 @default.
- W2324990129 cites W1984617546 @default.
- W2324990129 cites W1990505272 @default.
- W2324990129 cites W1991666036 @default.
- W2324990129 cites W2004390887 @default.
- W2324990129 cites W2007882536 @default.
- W2324990129 cites W2010311669 @default.
- W2324990129 cites W2016768862 @default.
- W2324990129 cites W2024083307 @default.
- W2324990129 cites W2024397988 @default.
- W2324990129 cites W2028148914 @default.
- W2324990129 cites W2049329640 @default.
- W2324990129 cites W2055313464 @default.
- W2324990129 cites W2056516381 @default.
- W2324990129 cites W2065355090 @default.
- W2324990129 cites W2069889731 @default.
- W2324990129 cites W2071700707 @default.
- W2324990129 cites W2073787272 @default.
- W2324990129 cites W2083246937 @default.
- W2324990129 cites W2088946747 @default.
- W2324990129 cites W2094309950 @default.
- W2324990129 cites W2104000640 @default.
- W2324990129 cites W2107581039 @default.
- W2324990129 cites W2110720938 @default.
- W2324990129 cites W2111453982 @default.
- W2324990129 cites W2112966727 @default.
- W2324990129 cites W2116546184 @default.
- W2324990129 cites W2123629690 @default.
- W2324990129 cites W2125048739 @default.
- W2324990129 cites W2127074336 @default.
- W2324990129 cites W2141068943 @default.
- W2324990129 cites W2143024293 @default.
- W2324990129 cites W2149278045 @default.
- W2324990129 cites W2185962591 @default.
- W2324990129 cites W2329715786 @default.
- W2324990129 cites W2344954620 @default.
- W2324990129 doi "https://doi.org/10.1097/rli.0b013e3182925160" @default.
- W2324990129 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3737404" @default.
- W2324990129 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23695085" @default.
- W2324990129 hasPublicationYear "2013" @default.
- W2324990129 type Work @default.
- W2324990129 sameAs 2324990129 @default.
- W2324990129 citedByCount "30" @default.
- W2324990129 countsByYear W23249901292014 @default.
- W2324990129 countsByYear W23249901292015 @default.
- W2324990129 countsByYear W23249901292016 @default.
- W2324990129 countsByYear W23249901292017 @default.
- W2324990129 countsByYear W23249901292019 @default.
- W2324990129 countsByYear W23249901292020 @default.
- W2324990129 countsByYear W23249901292021 @default.
- W2324990129 crossrefType "journal-article" @default.
- W2324990129 hasAuthorship W2324990129A5012996264 @default.
- W2324990129 hasAuthorship W2324990129A5027935558 @default.
- W2324990129 hasAuthorship W2324990129A5038862540 @default.
- W2324990129 hasAuthorship W2324990129A5045644653 @default.
- W2324990129 hasAuthorship W2324990129A5065313620 @default.
- W2324990129 hasAuthorship W2324990129A5067260056 @default.
- W2324990129 hasAuthorship W2324990129A5067330326 @default.
- W2324990129 hasAuthorship W2324990129A5069506427 @default.
- W2324990129 hasAuthorship W2324990129A5072024057 @default.
- W2324990129 hasAuthorship W2324990129A5075656142 @default.
- W2324990129 hasAuthorship W2324990129A5077965074 @default.
- W2324990129 hasAuthorship W2324990129A5079338526 @default.
- W2324990129 hasAuthorship W2324990129A5085763119 @default.
- W2324990129 hasBestOaLocation W23249901292 @default.
- W2324990129 hasConcept C105702510 @default.
- W2324990129 hasConcept C120665830 @default.
- W2324990129 hasConcept C121332964 @default.
- W2324990129 hasConcept C126838900 @default.
- W2324990129 hasConcept C135691158 @default.
- W2324990129 hasConcept C136229726 @default.
- W2324990129 hasConcept C143753070 @default.
- W2324990129 hasConcept C146957229 @default.
- W2324990129 hasConcept C150903083 @default.