Matches in SemOpenAlex for { <https://semopenalex.org/work/W2325370763> ?p ?o ?g. }
- W2325370763 endingPage "247" @default.
- W2325370763 startingPage "238" @default.
- W2325370763 abstract "Surfactant molecules have high surface activity, and can therefore influence the self-assembly of nanomaterials. The self-assembly of twinned boehmite nanosheets into porous 3D superstructures will be greatly affected by the presence of surfactant monomer and micelles in various ethanol–water mixtures. It should be possible to influence the shape, thickness, and twinning of boehmite nanosheets by varying the concentration of the surfactant and ethanol in the synthesis mixture to obtain high porosity 3D superstructures. The critical micelle concentration (CMC) of cationic surfactant cetyl trimethylammonium bromide (CTAB) was determined in 0, 12.5, 25, 37.5, and 50 vol% ethanol–water mixtures. The effect of CTAB on boehmite particle morphology and superstructure formation during self-assembly was explored at the CMC, and at 20%, 15%, 10%, 5% below and above the CMC of CTAB in various ethanol–water mixtures. Boehmite nanosheets with controllable shape and thickness were successfully formed in various ethanol–water mixtures. Prior to micelle formation, the average thickness of nanosheets formed in 0 vol%, 25 vol%, and 50 vol% ethanol–water were 200 nm, 110 nm and 100 nm, respectively. Micelle formation reduced the availability of surfactant molecules for particle templating, broadening the nanosheet thickness distribution. Micelle formation was inhibited in 50 vol% ethanol–water due to the increase in Gibbs free energy needed to form micelles relative to the Gibbs free energy of micelles in 0 vol% or 25 vol% ethanol–water. The enthalpy-driven process gives greater control over the nanosheet thickness, producing particles with narrow thickness distributions. In general, the CMC represented the point at which control is lost over the thickness of the nanoplatelets; increasing the surfactant concentration above the CMC increased the thickness of the nanoplatelets. Particle twinning during crystal growth produced an interconnected 3D network of boehmite particles with high porosity (79–88%) and hydraulic permeability (62.4–809 mD). The addition of ethanol during synthesis increased the porosity and reduced the bulk density of the 3D superstructures by 8–11% and 26–28%, respectively, and yielded a ten-fold increase in the hydraulic permeability. The integrity of the porous 3D network was maintained upon calcination, suspension in water and deposition by filtration onto cellulose filter paper." @default.
- W2325370763 created "2016-06-24" @default.
- W2325370763 creator A5061715377 @default.
- W2325370763 creator A5084296275 @default.
- W2325370763 date "2016-04-01" @default.
- W2325370763 modified "2023-10-09" @default.
- W2325370763 title "The self-assembly of twinned boehmite nanosheets into porous 3D structures in ethanol–water mixtures" @default.
- W2325370763 cites W1494149452 @default.
- W2325370763 cites W1554424388 @default.
- W2325370763 cites W1586816480 @default.
- W2325370763 cites W1967409079 @default.
- W2325370763 cites W1968179359 @default.
- W2325370763 cites W1968914076 @default.
- W2325370763 cites W1971541271 @default.
- W2325370763 cites W1973132682 @default.
- W2325370763 cites W1978008135 @default.
- W2325370763 cites W1981371742 @default.
- W2325370763 cites W1988420603 @default.
- W2325370763 cites W1991228974 @default.
- W2325370763 cites W1995473744 @default.
- W2325370763 cites W1999361205 @default.
- W2325370763 cites W2001011452 @default.
- W2325370763 cites W2004847550 @default.
- W2325370763 cites W2007010251 @default.
- W2325370763 cites W2012800844 @default.
- W2325370763 cites W2014620493 @default.
- W2325370763 cites W2015450290 @default.
- W2325370763 cites W2016330791 @default.
- W2325370763 cites W2016432267 @default.
- W2325370763 cites W2016752301 @default.
- W2325370763 cites W2024451528 @default.
- W2325370763 cites W2025116492 @default.
- W2325370763 cites W2026833109 @default.
- W2325370763 cites W2028751212 @default.
- W2325370763 cites W2030034414 @default.
- W2325370763 cites W2031986735 @default.
- W2325370763 cites W2039373024 @default.
- W2325370763 cites W2039997481 @default.
- W2325370763 cites W2040309373 @default.
- W2325370763 cites W2053194254 @default.
- W2325370763 cites W2054719977 @default.
- W2325370763 cites W2056075469 @default.
- W2325370763 cites W2058718487 @default.
- W2325370763 cites W2063424139 @default.
- W2325370763 cites W2077023757 @default.
- W2325370763 cites W2078798736 @default.
- W2325370763 cites W2080376276 @default.
- W2325370763 cites W2085928781 @default.
- W2325370763 cites W2086718745 @default.
- W2325370763 cites W2092570681 @default.
- W2325370763 cites W2092620920 @default.
- W2325370763 cites W2092968254 @default.
- W2325370763 cites W2096399165 @default.
- W2325370763 cites W2106268433 @default.
- W2325370763 cites W2106660538 @default.
- W2325370763 cites W2111925479 @default.
- W2325370763 cites W2113287878 @default.
- W2325370763 cites W2118645856 @default.
- W2325370763 cites W2126053659 @default.
- W2325370763 cites W2127340518 @default.
- W2325370763 cites W2132262734 @default.
- W2325370763 cites W2132616665 @default.
- W2325370763 cites W2139288637 @default.
- W2325370763 cites W2142400130 @default.
- W2325370763 cites W2145232661 @default.
- W2325370763 cites W2145572012 @default.
- W2325370763 cites W2156901760 @default.
- W2325370763 cites W2157739693 @default.
- W2325370763 cites W2166492091 @default.
- W2325370763 cites W2313653218 @default.
- W2325370763 cites W2315336177 @default.
- W2325370763 cites W2315446552 @default.
- W2325370763 cites W2332874143 @default.
- W2325370763 cites W2753449827 @default.
- W2325370763 doi "https://doi.org/10.1016/j.colsurfa.2016.01.025" @default.
- W2325370763 hasPublicationYear "2016" @default.
- W2325370763 type Work @default.
- W2325370763 sameAs 2325370763 @default.
- W2325370763 citedByCount "6" @default.
- W2325370763 countsByYear W23253707632016 @default.
- W2325370763 countsByYear W23253707632017 @default.
- W2325370763 countsByYear W23253707632018 @default.
- W2325370763 countsByYear W23253707632020 @default.
- W2325370763 countsByYear W23253707632021 @default.
- W2325370763 countsByYear W23253707632022 @default.
- W2325370763 crossrefType "journal-article" @default.
- W2325370763 hasAuthorship W2325370763A5061715377 @default.
- W2325370763 hasAuthorship W2325370763A5084296275 @default.
- W2325370763 hasConcept C11268172 @default.
- W2325370763 hasConcept C127413603 @default.
- W2325370763 hasConcept C159985019 @default.
- W2325370763 hasConcept C178790620 @default.
- W2325370763 hasConcept C184651966 @default.
- W2325370763 hasConcept C185592680 @default.
- W2325370763 hasConcept C192562407 @default.
- W2325370763 hasConcept C2777882336 @default.
- W2325370763 hasConcept C42360764 @default.
- W2325370763 hasConcept C513153333 @default.