Matches in SemOpenAlex for { <https://semopenalex.org/work/W2325702925> ?p ?o ?g. }
- W2325702925 endingPage "2811" @default.
- W2325702925 startingPage "2804" @default.
- W2325702925 abstract "ConspectusQuantum mechanics (QM) has revolutionized our understanding of the structure and reactivity of small molecular systems. Given the tremendous impact of QM in this research area, it is attractive to believe that this could also be brought into the biological realm where systems of a few thousand atoms and beyond are routine. Applying QM methods to biological problems brings an improved representation to these systems by the direct inclusion of inherently QM effects such as polarization and charge transfer. Because of the improved representation, novel insights can be gleaned from the application of QM tools to biomacromolecules in aqueous solution.To achieve this goal, the computational bottlenecks of QM methods had to be addressed. In semiempirical theory, matrix diagonalization is rate limiting, while in density functional theory or Hartree–Fock theory electron repulsion integral computation is rate-limiting. In this Account, we primarily focus on semiempirical models where the divide and conquer (D&C) approach linearizes the matrix diagonalization step with respect to the system size. Through the D&C approach, a number of applications to biological problems became tractable. Herein, we provide examples of QM studies on biological systems that focus on protein solvation as viewed by QM, QM enabled structure-based drug design, and NMR and X-ray biological structure refinement using QM derived restraints.Through the examples chosen, we show the power of QM to provide novel insights into biological systems, while also impacting practical applications such as structure refinement. While these methods can be more expensive than classical approaches, they make up for this deficiency by the more realistic modeling of the electronic nature of biological systems and in their ability to be broadly applied. Of the tools and applications discussed in this Account, X-ray structure refinement using QM models is now generally available to the community in the refinement package Phenix.While the power of this approach is manifest, challenges still remain. In particular, QM models are generally applied to static structures, so ways in which to include sampling is an ongoing challenge. Car–Parrinello or Born–Oppenheimer molecular dynamics approaches address the short time scale sampling issue, but how to effectively use QM to study phenomenon covering longer time scales will be the focus of future research. Finally, how to accurately and efficiently include electron correlation effects to facilitate the modeling of, for example, dispersive interactions, is also a major hurdle that a broad range of groups are addressingThe use of QM models in biology is in its infancy, leading to the expectation that the most significant use of these tools to address biological problems will be seen in the coming years. It is hoped that while this Account summarizes where we have been, it will also help set the stage for future research directions at the interface of quantum mechanics and biology." @default.
- W2325702925 created "2016-06-24" @default.
- W2325702925 creator A5085994852 @default.
- W2325702925 date "2014-06-06" @default.
- W2325702925 modified "2023-10-17" @default.
- W2325702925 title "Using Quantum Mechanical Approaches to Study Biological Systems" @default.
- W2325702925 cites W1964357583 @default.
- W2325702925 cites W1965425135 @default.
- W2325702925 cites W1966182950 @default.
- W2325702925 cites W1972091733 @default.
- W2325702925 cites W1972558086 @default.
- W2325702925 cites W1972852246 @default.
- W2325702925 cites W1979598348 @default.
- W2325702925 cites W1983598802 @default.
- W2325702925 cites W1985953075 @default.
- W2325702925 cites W1986472961 @default.
- W2325702925 cites W1986814683 @default.
- W2325702925 cites W1988947536 @default.
- W2325702925 cites W1990141055 @default.
- W2325702925 cites W1990316457 @default.
- W2325702925 cites W1990848495 @default.
- W2325702925 cites W1993248675 @default.
- W2325702925 cites W1995970359 @default.
- W2325702925 cites W1997250922 @default.
- W2325702925 cites W1998613783 @default.
- W2325702925 cites W2001703421 @default.
- W2325702925 cites W2002048114 @default.
- W2325702925 cites W2002401010 @default.
- W2325702925 cites W2002855866 @default.
- W2325702925 cites W2004303971 @default.
- W2325702925 cites W2005046515 @default.
- W2325702925 cites W2005638349 @default.
- W2325702925 cites W2007765441 @default.
- W2325702925 cites W2008850469 @default.
- W2325702925 cites W2010563282 @default.
- W2325702925 cites W2010566580 @default.
- W2325702925 cites W2011148270 @default.
- W2325702925 cites W2013600324 @default.
- W2325702925 cites W2014291666 @default.
- W2325702925 cites W2015438802 @default.
- W2325702925 cites W2016101946 @default.
- W2325702925 cites W2020386602 @default.
- W2325702925 cites W2020983121 @default.
- W2325702925 cites W2021863645 @default.
- W2325702925 cites W2025159559 @default.
- W2325702925 cites W2027174785 @default.
- W2325702925 cites W2028557359 @default.
- W2325702925 cites W2031694014 @default.
- W2325702925 cites W2033777798 @default.
- W2325702925 cites W2033951448 @default.
- W2325702925 cites W2035007609 @default.
- W2325702925 cites W2036250557 @default.
- W2325702925 cites W2036920329 @default.
- W2325702925 cites W2037927540 @default.
- W2325702925 cites W2038767330 @default.
- W2325702925 cites W2040244904 @default.
- W2325702925 cites W2041115772 @default.
- W2325702925 cites W2045130090 @default.
- W2325702925 cites W2051648599 @default.
- W2325702925 cites W2054597475 @default.
- W2325702925 cites W2058736568 @default.
- W2325702925 cites W2059503133 @default.
- W2325702925 cites W2059998193 @default.
- W2325702925 cites W2060208155 @default.
- W2325702925 cites W2060235409 @default.
- W2325702925 cites W2064776185 @default.
- W2325702925 cites W2066405179 @default.
- W2325702925 cites W2067086703 @default.
- W2325702925 cites W2067484324 @default.
- W2325702925 cites W2067540765 @default.
- W2325702925 cites W2067769803 @default.
- W2325702925 cites W2070590254 @default.
- W2325702925 cites W2072100637 @default.
- W2325702925 cites W2072565812 @default.
- W2325702925 cites W2072661618 @default.
- W2325702925 cites W2073773252 @default.
- W2325702925 cites W2074204869 @default.
- W2325702925 cites W2075811373 @default.
- W2325702925 cites W2076656428 @default.
- W2325702925 cites W2076664119 @default.
- W2325702925 cites W2079373942 @default.
- W2325702925 cites W2081054929 @default.
- W2325702925 cites W2081719547 @default.
- W2325702925 cites W2082993877 @default.
- W2325702925 cites W2091572890 @default.
- W2325702925 cites W2092875818 @default.
- W2325702925 cites W2096780261 @default.
- W2325702925 cites W2101289860 @default.
- W2325702925 cites W2101574921 @default.
- W2325702925 cites W2110212185 @default.
- W2325702925 cites W2110574506 @default.
- W2325702925 cites W2116426967 @default.
- W2325702925 cites W2116494521 @default.
- W2325702925 cites W2121895929 @default.
- W2325702925 cites W2123493585 @default.
- W2325702925 cites W2126247854 @default.
- W2325702925 cites W2130173471 @default.
- W2325702925 cites W2145065557 @default.