Matches in SemOpenAlex for { <https://semopenalex.org/work/W2325883609> ?p ?o ?g. }
- W2325883609 endingPage "185" @default.
- W2325883609 startingPage "177" @default.
- W2325883609 abstract "DAO Diseases of Aquatic Organisms Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsSpecials DAO 113:177-185 (2015) - DOI: https://doi.org/10.3354/dao02838 Predicting the potential distribution of the amphibian pathogen Batrachochytrium dendrobatidis in East and Southeast Asia Sachiko Moriguchi1,5,*, Atsushi Tominaga2, Kelly J. Irwin3, Michael J. Freake4, Kazutaka Suzuki1, Koichi Goka1 1Invasive Alien Species Research Team, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan 2Department of Natural Sciences, Faculty of Education, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 901-0213, Japan 3Arkansas Game and Fish Commission, 915 East Sevier Street, Benton, Arkansas 72015, USA 4Department of Natural Science and Mathematics, Lee University, 1120 Ocoee Street, Cleveland, Tennessee 37311, USA 5Present address: Viral Diseases and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5, Kannondai, Tsukuba, Ibaraki, 305-0856, Japan *Corresponding author: rustica79@yahoo.co.jp ABSTRACT: Batrachochytrium dendrobatidis (Bd) is the pathogen responsible for chytridiomycosis, a disease that is associated with a worldwide amphibian population decline. In this study, we predicted the potential distribution of Bd in East and Southeast Asia based on limited occurrence data. Our goal was to design an effective survey area where efforts to detect the pathogen can be focused. We generated ecological niche models using the maximum-entropy approach, with alleviation of multicollinearity and spatial autocorrelation. We applied eigenvector-based spatial filters as independent variables, in addition to environmental variables, to resolve spatial autocorrelation, and compared the model’s accuracy and the degree of spatial autocorrelation with those of a model estimated using only environmental variables. We were able to identify areas of high suitability for Bd with accuracy. Among the environmental variables, factors related to temperature and precipitation were more effective in predicting the potential distribution of Bd than factors related to land use and cover type. Our study successfully predicted the potential distribution of Bd in East and Southeast Asia. This information should now be used to prioritize survey areas and generate a surveillance program to detect the pathogen. KEY WORDS: Bd · Chytrid fungus · Chytridiomycosis · Eigenvector-based spatial filtering · Species distribution model · Niche modeling · MaxEnt Full text in pdf format NextCite this article as: Moriguchi S, Tominaga A, Irwin KJ, Freake MJ, Suzuki K, Goka K (2015) Predicting the potential distribution of the amphibian pathogen Batrachochytrium dendrobatidis in East and Southeast Asia. Dis Aquat Org 113:177-185. https://doi.org/10.3354/dao02838 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in DAO Vol. 113, No. 3. Online publication date: April 08, 2015 Print ISSN: 0177-5103; Online ISSN: 1616-1580 Copyright © 2015 Inter-Research." @default.
- W2325883609 created "2016-06-24" @default.
- W2325883609 creator A5007668105 @default.
- W2325883609 creator A5013342731 @default.
- W2325883609 creator A5016456350 @default.
- W2325883609 creator A5020517072 @default.
- W2325883609 creator A5042453782 @default.
- W2325883609 creator A5083484928 @default.
- W2325883609 date "2015-04-08" @default.
- W2325883609 modified "2023-09-27" @default.
- W2325883609 title "Predicting the potential distribution of the amphibian pathogen Batrachochytrium dendrobatidis in East and Southeast Asia" @default.
- W2325883609 cites W1489838709 @default.
- W2325883609 cites W1570307721 @default.
- W2325883609 cites W1689999137 @default.
- W2325883609 cites W1955397794 @default.
- W2325883609 cites W1969425659 @default.
- W2325883609 cites W1985206657 @default.
- W2325883609 cites W1999959871 @default.
- W2325883609 cites W2008397302 @default.
- W2325883609 cites W2014225118 @default.
- W2325883609 cites W2017099685 @default.
- W2325883609 cites W2019365746 @default.
- W2325883609 cites W2035001236 @default.
- W2325883609 cites W2045535476 @default.
- W2325883609 cites W2047845175 @default.
- W2325883609 cites W2056083982 @default.
- W2325883609 cites W2057790318 @default.
- W2325883609 cites W2059490907 @default.
- W2325883609 cites W2067581927 @default.
- W2325883609 cites W2070657242 @default.
- W2325883609 cites W2071931002 @default.
- W2325883609 cites W2074311495 @default.
- W2325883609 cites W2076028350 @default.
- W2325883609 cites W2098827790 @default.
- W2325883609 cites W2100787404 @default.
- W2325883609 cites W2106536835 @default.
- W2325883609 cites W2112315008 @default.
- W2325883609 cites W2112776483 @default.
- W2325883609 cites W2120055476 @default.
- W2325883609 cites W2123024176 @default.
- W2325883609 cites W2125716105 @default.
- W2325883609 cites W2131316266 @default.
- W2325883609 cites W2139416101 @default.
- W2325883609 cites W2141595343 @default.
- W2325883609 cites W2148875031 @default.
- W2325883609 cites W2150891147 @default.
- W2325883609 cites W2155047750 @default.
- W2325883609 cites W2155735353 @default.
- W2325883609 cites W2160571481 @default.
- W2325883609 cites W2160985555 @default.
- W2325883609 cites W2162530050 @default.
- W2325883609 cites W2170565777 @default.
- W2325883609 cites W2170587989 @default.
- W2325883609 cites W4211001371 @default.
- W2325883609 cites W4229611067 @default.
- W2325883609 cites W4251317402 @default.
- W2325883609 cites W2118035441 @default.
- W2325883609 doi "https://doi.org/10.3354/dao02838" @default.
- W2325883609 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25850395" @default.
- W2325883609 hasPublicationYear "2015" @default.
- W2325883609 type Work @default.
- W2325883609 sameAs 2325883609 @default.
- W2325883609 citedByCount "2" @default.
- W2325883609 countsByYear W23258836092017 @default.
- W2325883609 countsByYear W23258836092019 @default.
- W2325883609 crossrefType "journal-article" @default.
- W2325883609 hasAuthorship W2325883609A5007668105 @default.
- W2325883609 hasAuthorship W2325883609A5013342731 @default.
- W2325883609 hasAuthorship W2325883609A5016456350 @default.
- W2325883609 hasAuthorship W2325883609A5020517072 @default.
- W2325883609 hasAuthorship W2325883609A5042453782 @default.
- W2325883609 hasAuthorship W2325883609A5083484928 @default.
- W2325883609 hasConcept C161153951 @default.
- W2325883609 hasConcept C18903297 @default.
- W2325883609 hasConcept C205649164 @default.
- W2325883609 hasConcept C2779487301 @default.
- W2325883609 hasConcept C2781273459 @default.
- W2325883609 hasConcept C2781465898 @default.
- W2325883609 hasConcept C2908647359 @default.
- W2325883609 hasConcept C2909208804 @default.
- W2325883609 hasConcept C505870484 @default.
- W2325883609 hasConcept C71924100 @default.
- W2325883609 hasConcept C86803240 @default.
- W2325883609 hasConcept C99454951 @default.
- W2325883609 hasConceptScore W2325883609C161153951 @default.
- W2325883609 hasConceptScore W2325883609C18903297 @default.
- W2325883609 hasConceptScore W2325883609C205649164 @default.
- W2325883609 hasConceptScore W2325883609C2779487301 @default.
- W2325883609 hasConceptScore W2325883609C2781273459 @default.
- W2325883609 hasConceptScore W2325883609C2781465898 @default.
- W2325883609 hasConceptScore W2325883609C2908647359 @default.
- W2325883609 hasConceptScore W2325883609C2909208804 @default.
- W2325883609 hasConceptScore W2325883609C505870484 @default.
- W2325883609 hasConceptScore W2325883609C71924100 @default.
- W2325883609 hasConceptScore W2325883609C86803240 @default.
- W2325883609 hasConceptScore W2325883609C99454951 @default.
- W2325883609 hasIssue "3" @default.
- W2325883609 hasLocation W23258836091 @default.