Matches in SemOpenAlex for { <https://semopenalex.org/work/W2325942378> ?p ?o ?g. }
- W2325942378 endingPage "1450" @default.
- W2325942378 startingPage "1441" @default.
- W2325942378 abstract "Because of the potential applications of biosensors in clinical diagnosis, biomedical research, environmental analysis, and food quality control, researchers are very interested in developing sensitive, selective, rapid, reliable, and low-cost versions of these devices. A classic biosensor directly transduces ligand-target binding events into a measurable physical readout. Because of the limited detection sensitivity and selectivity in earlier biosensors, researchers have developed a number of sensing/signal amplification strategies. Through the use of nanostructured or long chain polymeric materials to increase the upload of signal tags for amplification of the signal readout associated with the ligand-target binding events, researchers have achieved high sensitivity and exceptional selectivity. Very recently, target-triggered polymerization-assisted signal amplification strategies have been exploited as a new biosensing mechanism with many attractive features. This strategy couples a small initiator molecule to the DNA/protein detection probe prior to DNA hybridization or DNA/protein and protein/protein binding events. After ligand-target binding, the in-situ polymerization reaction is triggered. As a result, tens to hundreds of small monomer signal reporter molecules assemble into long chain polymers at the location where the initiator molecule was attached. The resulting polymer materials changed the optical and electrochemical properties at this location, which make the signal easily distinguishable from the background. The assay time ranged from minutes to hours and was determined by the degree of amplification needed. In this Account, we summarize a series of electrochemical and optical biosensors that employ target-triggered polymerization. We focus on the use of atom transfer radical polymerization (ATRP), as well as activator generated electron transfer for atom transfer radical polymerization (AGET ATRP) for in-situ formation of polymer materials for optically or electrochemically transducing DNA hybridization and protein-target binding. ATRP and AGET ATRP can tolerate a wide range of functional monomers. They also allow for the preparation of well-controlled polymers with narrow molecular weight distribution, which was predetermined by the concentration ratio of the consumed monomer to the introduced initiator. Because the reaction initiator can be attached to a variety of detection probes through well-established cross-linking reactions, this technique could be expanded as a universal strategy for the sensitive detection of DNA and proteins. We see enormous potential for this new sensing technology in the development of portable DNA/protein sensors for point-of-need applications." @default.
- W2325942378 created "2016-06-24" @default.
- W2325942378 creator A5003799076 @default.
- W2325942378 creator A5023696126 @default.
- W2325942378 creator A5049108933 @default.
- W2325942378 date "2012-07-10" @default.
- W2325942378 modified "2023-09-24" @default.
- W2325942378 title "Target-Triggered Polymerization for Biosensing" @default.
- W2325942378 cites W1966263729 @default.
- W2325942378 cites W1967660626 @default.
- W2325942378 cites W1973341624 @default.
- W2325942378 cites W1978177736 @default.
- W2325942378 cites W1979868449 @default.
- W2325942378 cites W1983584509 @default.
- W2325942378 cites W1988770634 @default.
- W2325942378 cites W1999071680 @default.
- W2325942378 cites W2000387754 @default.
- W2325942378 cites W2006263033 @default.
- W2325942378 cites W2008648326 @default.
- W2325942378 cites W2010224037 @default.
- W2325942378 cites W2012442036 @default.
- W2325942378 cites W2012996079 @default.
- W2325942378 cites W2020465500 @default.
- W2325942378 cites W2026645198 @default.
- W2325942378 cites W2029745979 @default.
- W2325942378 cites W2030714364 @default.
- W2325942378 cites W2031942242 @default.
- W2325942378 cites W2032308530 @default.
- W2325942378 cites W2032609909 @default.
- W2325942378 cites W2033978255 @default.
- W2325942378 cites W2035398223 @default.
- W2325942378 cites W2038260573 @default.
- W2325942378 cites W2040563149 @default.
- W2325942378 cites W2043132649 @default.
- W2325942378 cites W2045055557 @default.
- W2325942378 cites W2045302304 @default.
- W2325942378 cites W2045380807 @default.
- W2325942378 cites W2048959224 @default.
- W2325942378 cites W2050294445 @default.
- W2325942378 cites W2055393399 @default.
- W2325942378 cites W2057247529 @default.
- W2325942378 cites W2057661260 @default.
- W2325942378 cites W2061838938 @default.
- W2325942378 cites W2070617973 @default.
- W2325942378 cites W2070774090 @default.
- W2325942378 cites W2071764404 @default.
- W2325942378 cites W2074711360 @default.
- W2325942378 cites W2077764562 @default.
- W2325942378 cites W2080474510 @default.
- W2325942378 cites W2082114067 @default.
- W2325942378 cites W2083343911 @default.
- W2325942378 cites W2083904368 @default.
- W2325942378 cites W2084870192 @default.
- W2325942378 cites W2086141397 @default.
- W2325942378 cites W2090576009 @default.
- W2325942378 cites W2091441268 @default.
- W2325942378 cites W2093662126 @default.
- W2325942378 cites W2093730101 @default.
- W2325942378 cites W2119706867 @default.
- W2325942378 cites W2127441156 @default.
- W2325942378 cites W2131359117 @default.
- W2325942378 cites W2132551021 @default.
- W2325942378 cites W2144122182 @default.
- W2325942378 cites W2162540479 @default.
- W2325942378 cites W2166934622 @default.
- W2325942378 cites W2167066199 @default.
- W2325942378 cites W2169213915 @default.
- W2325942378 cites W2314717048 @default.
- W2325942378 cites W4232565521 @default.
- W2325942378 doi "https://doi.org/10.1021/ar200310f" @default.
- W2325942378 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22780874" @default.
- W2325942378 hasPublicationYear "2012" @default.
- W2325942378 type Work @default.
- W2325942378 sameAs 2325942378 @default.
- W2325942378 citedByCount "47" @default.
- W2325942378 countsByYear W23259423782013 @default.
- W2325942378 countsByYear W23259423782014 @default.
- W2325942378 countsByYear W23259423782015 @default.
- W2325942378 countsByYear W23259423782016 @default.
- W2325942378 countsByYear W23259423782019 @default.
- W2325942378 countsByYear W23259423782020 @default.
- W2325942378 countsByYear W23259423782021 @default.
- W2325942378 countsByYear W23259423782022 @default.
- W2325942378 countsByYear W23259423782023 @default.
- W2325942378 crossrefType "journal-article" @default.
- W2325942378 hasAuthorship W2325942378A5003799076 @default.
- W2325942378 hasAuthorship W2325942378A5023696126 @default.
- W2325942378 hasAuthorship W2325942378A5049108933 @default.
- W2325942378 hasConcept C116569031 @default.
- W2325942378 hasConcept C12554922 @default.
- W2325942378 hasConcept C160756335 @default.
- W2325942378 hasConcept C161624437 @default.
- W2325942378 hasConcept C170493617 @default.
- W2325942378 hasConcept C171250308 @default.
- W2325942378 hasConcept C178790620 @default.
- W2325942378 hasConcept C185592680 @default.
- W2325942378 hasConcept C192562407 @default.
- W2325942378 hasConcept C21951064 @default.