Matches in SemOpenAlex for { <https://semopenalex.org/work/W2326372119> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2326372119 abstract "In this paper, we introduce bayesian artificial networks as a causal modeling tool And analyse bayesian learning algorithms. Two important methods of learning bayesian are parameter learning and structure learning. Because of its impact on inference and forecasting results, Learning algorithm selection process in bayesian network is very important. As a first step, key learning algorithms, like Naive Bayes Classifier, Hill Climbing, K2, Greedy Thick Thinning are implemented and Are compared based on accuracy and structured network time. Finally, the best of learning algorithm will be proposed. We work with a database of observations (monthly rainfall) measured for the years 1985-2010 in a network of 22 stations in the (Rzavi, Shomali And Jonoubi) Khorasan provinces and with the corresponding gridded atmospheric patterns generated by a numerical circulation model. A Bayesian network or BN is a model that reflects the states of real world and describes how those states are related together by probabilities. Using this framework, the inherent structure of different processes can be interpreted. Although Bayesian Networks provide a means for inference but finding the structure of the networks remains an NP-hard problem. The reason for this is that there is an enormously large number of ways in which the network nodes can be linked to each other. In order to mitigate this problem, a number of algorithms have been proposed. Like, the Naive Bayes Classifier, K2, Local K2, Greedy Thick Thinning or GTT algorithms and etc. The main purpose of this paper to determine the algorithm which produces the Bayesian network with the highest predictive accuracy, and is constructed in the least amount of time. The first part of the article provides a brief introduction of bayesian networks. Then, experimental data sets and methods of normalization is reviewed. In the next section, the main bayesian learning algorithms is introduced and inference methods of them is descripted. In the last section, Results related to the implementations and comparison of algorithms is expressed (1)(2)." @default.
- W2326372119 created "2016-06-24" @default.
- W2326372119 creator A5001017639 @default.
- W2326372119 creator A5002207845 @default.
- W2326372119 creator A5039495757 @default.
- W2326372119 creator A5078149539 @default.
- W2326372119 date "2012-01-01" @default.
- W2326372119 modified "2023-09-27" @default.
- W2326372119 title "Structure Learning of Bayesian Networks Using Heuristic Methods" @default.
- W2326372119 cites W1985026895 @default.
- W2326372119 cites W2110388379 @default.
- W2326372119 cites W2128088446 @default.
- W2326372119 cites W104835503 @default.
- W2326372119 cites W154065540 @default.
- W2326372119 hasPublicationYear "2012" @default.
- W2326372119 type Work @default.
- W2326372119 sameAs 2326372119 @default.
- W2326372119 citedByCount "3" @default.
- W2326372119 countsByYear W23263721192014 @default.
- W2326372119 countsByYear W23263721192018 @default.
- W2326372119 countsByYear W23263721192021 @default.
- W2326372119 crossrefType "journal-article" @default.
- W2326372119 hasAuthorship W2326372119A5001017639 @default.
- W2326372119 hasAuthorship W2326372119A5002207845 @default.
- W2326372119 hasAuthorship W2326372119A5039495757 @default.
- W2326372119 hasAuthorship W2326372119A5078149539 @default.
- W2326372119 hasConcept C107673813 @default.
- W2326372119 hasConcept C11413529 @default.
- W2326372119 hasConcept C119857082 @default.
- W2326372119 hasConcept C12267149 @default.
- W2326372119 hasConcept C127043819 @default.
- W2326372119 hasConcept C154945302 @default.
- W2326372119 hasConcept C155846161 @default.
- W2326372119 hasConcept C160234255 @default.
- W2326372119 hasConcept C2776214188 @default.
- W2326372119 hasConcept C33724603 @default.
- W2326372119 hasConcept C41008148 @default.
- W2326372119 hasConcept C51823790 @default.
- W2326372119 hasConcept C52001869 @default.
- W2326372119 hasConcept C71983512 @default.
- W2326372119 hasConceptScore W2326372119C107673813 @default.
- W2326372119 hasConceptScore W2326372119C11413529 @default.
- W2326372119 hasConceptScore W2326372119C119857082 @default.
- W2326372119 hasConceptScore W2326372119C12267149 @default.
- W2326372119 hasConceptScore W2326372119C127043819 @default.
- W2326372119 hasConceptScore W2326372119C154945302 @default.
- W2326372119 hasConceptScore W2326372119C155846161 @default.
- W2326372119 hasConceptScore W2326372119C160234255 @default.
- W2326372119 hasConceptScore W2326372119C2776214188 @default.
- W2326372119 hasConceptScore W2326372119C33724603 @default.
- W2326372119 hasConceptScore W2326372119C41008148 @default.
- W2326372119 hasConceptScore W2326372119C51823790 @default.
- W2326372119 hasConceptScore W2326372119C52001869 @default.
- W2326372119 hasConceptScore W2326372119C71983512 @default.
- W2326372119 hasLocation W23263721191 @default.
- W2326372119 hasOpenAccess W2326372119 @default.
- W2326372119 hasPrimaryLocation W23263721191 @default.
- W2326372119 hasRelatedWork W1501163499 @default.
- W2326372119 hasRelatedWork W1514928772 @default.
- W2326372119 hasRelatedWork W1546490020 @default.
- W2326372119 hasRelatedWork W168332103 @default.
- W2326372119 hasRelatedWork W1799396364 @default.
- W2326372119 hasRelatedWork W1953503717 @default.
- W2326372119 hasRelatedWork W2022665301 @default.
- W2326372119 hasRelatedWork W2024319865 @default.
- W2326372119 hasRelatedWork W2096030104 @default.
- W2326372119 hasRelatedWork W2139650424 @default.
- W2326372119 hasRelatedWork W2358163403 @default.
- W2326372119 hasRelatedWork W2378396259 @default.
- W2326372119 hasRelatedWork W2390172648 @default.
- W2326372119 hasRelatedWork W2512044834 @default.
- W2326372119 hasRelatedWork W2548883828 @default.
- W2326372119 hasRelatedWork W3116854996 @default.
- W2326372119 hasRelatedWork W655197271 @default.
- W2326372119 hasRelatedWork W65886597 @default.
- W2326372119 hasRelatedWork W154065540 @default.
- W2326372119 hasRelatedWork W268503997 @default.
- W2326372119 isParatext "false" @default.
- W2326372119 isRetracted "false" @default.
- W2326372119 magId "2326372119" @default.
- W2326372119 workType "article" @default.