Matches in SemOpenAlex for { <https://semopenalex.org/work/W2326488178> ?p ?o ?g. }
- W2326488178 abstract "AbstractIn this paper, research work involved in the prediction of life of deep drawing die using artificial neural network (ANN) is described. The parameters affecting life of deep drawing die such as size and material of die block and punches are investigated through finite element (FE) analysis and the critical simulation values are determined. Based on FE analysis results, stress amplitude (S) vs. cycles to failure (N) approach is used for prediction of number of cycles of deep drawing die. The number of cycles gives the number of sheet metal parts that can be produced with the deep drawing die before its failure. The ANN model of the proposed system is developed using MATLAB. The data required for ANN are obtained from FE analysis. The generated output data from FE analysis are used to train ANN model. The developed ANN model predicts the life of deep drawing die in terms of number of sheet metal parts. Usefulness of the proposed system is demonstrated through an example of an industrial sheet metal ..." @default.
- W2326488178 created "2016-06-24" @default.
- W2326488178 creator A5008132777 @default.
- W2326488178 creator A5027025142 @default.
- W2326488178 creator A5034960616 @default.
- W2326488178 creator A5062518425 @default.
- W2326488178 creator A5085110123 @default.
- W2326488178 date "2016-01-02" @default.
- W2326488178 modified "2023-10-01" @default.
- W2326488178 title "Prediction of life of deep drawing die using artificial neural network" @default.
- W2326488178 cites W1947487896 @default.
- W2326488178 cites W1968909874 @default.
- W2326488178 cites W1973835819 @default.
- W2326488178 cites W1978965153 @default.
- W2326488178 cites W1985942255 @default.
- W2326488178 cites W1988776261 @default.
- W2326488178 cites W1990011483 @default.
- W2326488178 cites W1995346259 @default.
- W2326488178 cites W1998887712 @default.
- W2326488178 cites W1999028509 @default.
- W2326488178 cites W2009419343 @default.
- W2326488178 cites W2009717902 @default.
- W2326488178 cites W2014158029 @default.
- W2326488178 cites W2018368215 @default.
- W2326488178 cites W2021208455 @default.
- W2326488178 cites W2035435439 @default.
- W2326488178 cites W2047430001 @default.
- W2326488178 cites W2054837250 @default.
- W2326488178 cites W2074017917 @default.
- W2326488178 cites W2074474407 @default.
- W2326488178 cites W2075852870 @default.
- W2326488178 cites W2088017013 @default.
- W2326488178 cites W2090468887 @default.
- W2326488178 cites W2090796206 @default.
- W2326488178 cites W2092936119 @default.
- W2326488178 doi "https://doi.org/10.1080/2374068x.2016.1160601" @default.
- W2326488178 hasPublicationYear "2016" @default.
- W2326488178 type Work @default.
- W2326488178 sameAs 2326488178 @default.
- W2326488178 citedByCount "4" @default.
- W2326488178 countsByYear W23264881782019 @default.
- W2326488178 countsByYear W23264881782020 @default.
- W2326488178 crossrefType "journal-article" @default.
- W2326488178 hasAuthorship W2326488178A5008132777 @default.
- W2326488178 hasAuthorship W2326488178A5027025142 @default.
- W2326488178 hasAuthorship W2326488178A5034960616 @default.
- W2326488178 hasAuthorship W2326488178A5062518425 @default.
- W2326488178 hasAuthorship W2326488178A5085110123 @default.
- W2326488178 hasConcept C111106434 @default.
- W2326488178 hasConcept C111919701 @default.
- W2326488178 hasConcept C127413603 @default.
- W2326488178 hasConcept C135628077 @default.
- W2326488178 hasConcept C154945302 @default.
- W2326488178 hasConcept C192562407 @default.
- W2326488178 hasConcept C199639397 @default.
- W2326488178 hasConcept C2524010 @default.
- W2326488178 hasConcept C2777210771 @default.
- W2326488178 hasConcept C2779747408 @default.
- W2326488178 hasConcept C2780365114 @default.
- W2326488178 hasConcept C2781031896 @default.
- W2326488178 hasConcept C33923547 @default.
- W2326488178 hasConcept C41008148 @default.
- W2326488178 hasConcept C50644808 @default.
- W2326488178 hasConcept C66938386 @default.
- W2326488178 hasConcept C78519656 @default.
- W2326488178 hasConceptScore W2326488178C111106434 @default.
- W2326488178 hasConceptScore W2326488178C111919701 @default.
- W2326488178 hasConceptScore W2326488178C127413603 @default.
- W2326488178 hasConceptScore W2326488178C135628077 @default.
- W2326488178 hasConceptScore W2326488178C154945302 @default.
- W2326488178 hasConceptScore W2326488178C192562407 @default.
- W2326488178 hasConceptScore W2326488178C199639397 @default.
- W2326488178 hasConceptScore W2326488178C2524010 @default.
- W2326488178 hasConceptScore W2326488178C2777210771 @default.
- W2326488178 hasConceptScore W2326488178C2779747408 @default.
- W2326488178 hasConceptScore W2326488178C2780365114 @default.
- W2326488178 hasConceptScore W2326488178C2781031896 @default.
- W2326488178 hasConceptScore W2326488178C33923547 @default.
- W2326488178 hasConceptScore W2326488178C41008148 @default.
- W2326488178 hasConceptScore W2326488178C50644808 @default.
- W2326488178 hasConceptScore W2326488178C66938386 @default.
- W2326488178 hasConceptScore W2326488178C78519656 @default.
- W2326488178 hasLocation W23264881781 @default.
- W2326488178 hasOpenAccess W2326488178 @default.
- W2326488178 hasPrimaryLocation W23264881781 @default.
- W2326488178 hasRelatedWork W2011486503 @default.
- W2326488178 hasRelatedWork W2021655555 @default.
- W2326488178 hasRelatedWork W2030824626 @default.
- W2326488178 hasRelatedWork W2044691230 @default.
- W2326488178 hasRelatedWork W2047282579 @default.
- W2326488178 hasRelatedWork W2061835900 @default.
- W2326488178 hasRelatedWork W2069313847 @default.
- W2326488178 hasRelatedWork W2076889153 @default.
- W2326488178 hasRelatedWork W2080822772 @default.
- W2326488178 hasRelatedWork W2083807156 @default.
- W2326488178 hasRelatedWork W2185337413 @default.
- W2326488178 hasRelatedWork W2354353069 @default.
- W2326488178 hasRelatedWork W2358259165 @default.
- W2326488178 hasRelatedWork W2369750226 @default.
- W2326488178 hasRelatedWork W2389737458 @default.