Matches in SemOpenAlex for { <https://semopenalex.org/work/W2326972603> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2326972603 abstract "Artificial neural networks and their systems are already capable of learning, to summarize, filter, and classify information. The increasing amount of authors are trying to teach them to approximate and predict chaotic, fractal processes. One of the greatest challenges of today's financial researches is forecasting of the commodities, stocks and currency markets. Variations in prices lead to economic indicators as result of investment process of investors and short time market players. Present article investigates recurrent neural network systems as mathematical tool for objective forecasts of fractal behaviour of financial markets by Evolino recurrent neural network learning algorithm." @default.
- W2326972603 created "2016-06-24" @default.
- W2326972603 creator A5034849264 @default.
- W2326972603 creator A5067420694 @default.
- W2326972603 creator A5070743219 @default.
- W2326972603 date "2010-05-12" @default.
- W2326972603 modified "2023-10-17" @default.
- W2326972603 title "Modelling of the history and predictions of financial market time series using Evolino" @default.
- W2326972603 cites W12277440 @default.
- W2326972603 cites W136010251 @default.
- W2326972603 cites W1868400470 @default.
- W2326972603 cites W2001378272 @default.
- W2326972603 cites W2018027127 @default.
- W2326972603 cites W2125303539 @default.
- W2326972603 cites W2128308423 @default.
- W2326972603 cites W2145537345 @default.
- W2326972603 cites W642509312 @default.
- W2326972603 doi "https://doi.org/10.3846/bm.2010.024" @default.
- W2326972603 hasPublicationYear "2010" @default.
- W2326972603 type Work @default.
- W2326972603 sameAs 2326972603 @default.
- W2326972603 citedByCount "2" @default.
- W2326972603 countsByYear W23269726032012 @default.
- W2326972603 countsByYear W23269726032017 @default.
- W2326972603 crossrefType "proceedings-article" @default.
- W2326972603 hasAuthorship W2326972603A5034849264 @default.
- W2326972603 hasAuthorship W2326972603A5067420694 @default.
- W2326972603 hasAuthorship W2326972603A5070743219 @default.
- W2326972603 hasConcept C10138342 @default.
- W2326972603 hasConcept C119857082 @default.
- W2326972603 hasConcept C127313418 @default.
- W2326972603 hasConcept C143724316 @default.
- W2326972603 hasConcept C151406439 @default.
- W2326972603 hasConcept C151730666 @default.
- W2326972603 hasConcept C162324750 @default.
- W2326972603 hasConcept C19244329 @default.
- W2326972603 hasConcept C41008148 @default.
- W2326972603 hasConceptScore W2326972603C10138342 @default.
- W2326972603 hasConceptScore W2326972603C119857082 @default.
- W2326972603 hasConceptScore W2326972603C127313418 @default.
- W2326972603 hasConceptScore W2326972603C143724316 @default.
- W2326972603 hasConceptScore W2326972603C151406439 @default.
- W2326972603 hasConceptScore W2326972603C151730666 @default.
- W2326972603 hasConceptScore W2326972603C162324750 @default.
- W2326972603 hasConceptScore W2326972603C19244329 @default.
- W2326972603 hasConceptScore W2326972603C41008148 @default.
- W2326972603 hasLocation W23269726031 @default.
- W2326972603 hasOpenAccess W2326972603 @default.
- W2326972603 hasPrimaryLocation W23269726031 @default.
- W2326972603 hasRelatedWork W1550175370 @default.
- W2326972603 hasRelatedWork W1612883321 @default.
- W2326972603 hasRelatedWork W1990205660 @default.
- W2326972603 hasRelatedWork W2119012848 @default.
- W2326972603 hasRelatedWork W2153291261 @default.
- W2326972603 hasRelatedWork W2189509466 @default.
- W2326972603 hasRelatedWork W3033088600 @default.
- W2326972603 hasRelatedWork W3173197429 @default.
- W2326972603 hasRelatedWork W4294204276 @default.
- W2326972603 hasRelatedWork W2622688551 @default.
- W2326972603 isParatext "false" @default.
- W2326972603 isRetracted "false" @default.
- W2326972603 magId "2326972603" @default.
- W2326972603 workType "article" @default.