Matches in SemOpenAlex for { <https://semopenalex.org/work/W2327026567> ?p ?o ?g. }
- W2327026567 endingPage "10621" @default.
- W2327026567 startingPage "10611" @default.
- W2327026567 abstract "Temperature-dependent photoluminescence of structurally precise Au25(SC8H9)18 and Au38(SC12H25)24 monolayer-protected cluster (MPC) nanoparticles were studied using energy-resolved, intensity-integrated, and time-resolved spectroscopy. Measurements were carried out at sample temperatures spanning the range from 4.5 to 200 K following electronic excitation using 3.1 eV pulsed lasers. The integrated PL intensity for Au25(SC8H9)18 increased sharply by 70% as the sample temperature was increased from 4.5 to 45 K. The PL intensity was statistically invariant for temperatures between 45 and 65 K but was quenched when the sample temperature was raised above 65 K. For both MPC samples, the global PL emission included several components. Each PL component exhibited an increase in emission energy when the sample temperature was increased from 4.5 to 40 K. This unexpected behavior may imply that MPCs in the 1 nm domain have negative expansion coefficients. Quantitative analysis of PL emission energies and peak widths obtained at sample temperatures greater than 45 K indicated MPC nonradiative relaxation dynamics are mediated by coupling to low-frequency vibrations associated with the ligand shell that passivated the nanoclusters, which accounted for the low emission yields at high sample temperatures. Contributions from two different vibrational modes were identified: Au(I)-S stretching (200 cm(-1)) and Au(0)-Au(I) stretching (90 cm(-1)). Analysis of each PL component revealed that the magnitude of electronic-vibration coupling was state-specific, and consistently larger for the high-energy portions of the PL spectra. The total integrated PL intensity of the Au25(SC8H9)18 MPC was correlated to the relative branching ratios of the emission components, which confirmed decreased emission for recombination channels associated with strong electron-vibration coupling and high emission yields for low emission energies at low temperature. The efficient low-energy emission was attributed to a charge-transfer PL transition. This conclusion was reached based on the strong correlation between temperature-dependent intensity-integrated and time-resolved emission measurements that revealed an ∼3.5-5.5 meV activation barrier to nonradiative decay. These findings suggest that nanoscale structure and composition can be modified to tailor the optical and mechanical properties and electronic relaxation dynamics of MPC nanostructures." @default.
- W2327026567 created "2016-06-24" @default.
- W2327026567 creator A5010461787 @default.
- W2327026567 creator A5017288766 @default.
- W2327026567 creator A5020512076 @default.
- W2327026567 creator A5032826399 @default.
- W2327026567 creator A5033273458 @default.
- W2327026567 creator A5057067371 @default.
- W2327026567 date "2014-09-16" @default.
- W2327026567 modified "2023-09-24" @default.
- W2327026567 title "Temperature-Dependent Photoluminescence of Structurally-Precise Quantum-Confined Au<sub>25</sub>(SC<sub>8</sub>H<sub>9</sub>)<sub>18</sub> and Au<sub>38</sub>(SC<sub>12</sub>H<sub>25</sub>)<sub>24</sub> Metal Nanoparticles" @default.
- W2327026567 cites W1529850994 @default.
- W2327026567 cites W1556801875 @default.
- W2327026567 cites W179471644 @default.
- W2327026567 cites W1964132516 @default.
- W2327026567 cites W1969573702 @default.
- W2327026567 cites W1973153517 @default.
- W2327026567 cites W1973237572 @default.
- W2327026567 cites W1976639056 @default.
- W2327026567 cites W1979884986 @default.
- W2327026567 cites W1980565992 @default.
- W2327026567 cites W1980642665 @default.
- W2327026567 cites W1980939315 @default.
- W2327026567 cites W1981231666 @default.
- W2327026567 cites W1987217112 @default.
- W2327026567 cites W1991975641 @default.
- W2327026567 cites W1994737772 @default.
- W2327026567 cites W2002971905 @default.
- W2327026567 cites W2003660417 @default.
- W2327026567 cites W2009796325 @default.
- W2327026567 cites W2010997461 @default.
- W2327026567 cites W2011295917 @default.
- W2327026567 cites W2013051118 @default.
- W2327026567 cites W2014717757 @default.
- W2327026567 cites W2019616686 @default.
- W2327026567 cites W2022190942 @default.
- W2327026567 cites W2028145439 @default.
- W2327026567 cites W2030235610 @default.
- W2327026567 cites W2031962593 @default.
- W2327026567 cites W2033699021 @default.
- W2327026567 cites W2034183695 @default.
- W2327026567 cites W2037244776 @default.
- W2327026567 cites W2044799797 @default.
- W2327026567 cites W2047822467 @default.
- W2327026567 cites W2053627894 @default.
- W2327026567 cites W2065675356 @default.
- W2327026567 cites W2066286007 @default.
- W2327026567 cites W2069395171 @default.
- W2327026567 cites W2069807403 @default.
- W2327026567 cites W2070805715 @default.
- W2327026567 cites W2071532854 @default.
- W2327026567 cites W2074963667 @default.
- W2327026567 cites W2076167764 @default.
- W2327026567 cites W2082572228 @default.
- W2327026567 cites W2083519191 @default.
- W2327026567 cites W2089876141 @default.
- W2327026567 cites W2090046309 @default.
- W2327026567 cites W2090420968 @default.
- W2327026567 cites W2092131542 @default.
- W2327026567 cites W2094817871 @default.
- W2327026567 cites W2094899852 @default.
- W2327026567 cites W2095547289 @default.
- W2327026567 cites W2096868202 @default.
- W2327026567 cites W2099472265 @default.
- W2327026567 cites W2108299472 @default.
- W2327026567 cites W2112543373 @default.
- W2327026567 cites W2123595357 @default.
- W2327026567 cites W2132314137 @default.
- W2327026567 cites W2135154336 @default.
- W2327026567 cites W2142175727 @default.
- W2327026567 cites W2145208080 @default.
- W2327026567 cites W2151399844 @default.
- W2327026567 cites W2151599528 @default.
- W2327026567 cites W2152744436 @default.
- W2327026567 cites W2154773020 @default.
- W2327026567 cites W2312760481 @default.
- W2327026567 cites W2314564191 @default.
- W2327026567 cites W2315578735 @default.
- W2327026567 cites W2317009221 @default.
- W2327026567 cites W2317308632 @default.
- W2327026567 cites W2322657641 @default.
- W2327026567 cites W2324680403 @default.
- W2327026567 cites W2325824199 @default.
- W2327026567 cites W2327998508 @default.
- W2327026567 cites W2329591166 @default.
- W2327026567 cites W2491458126 @default.
- W2327026567 cites W2951794441 @default.
- W2327026567 cites W4234750540 @default.
- W2327026567 doi "https://doi.org/10.1021/jp505913j" @default.
- W2327026567 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25226506" @default.
- W2327026567 hasPublicationYear "2014" @default.
- W2327026567 type Work @default.
- W2327026567 sameAs 2327026567 @default.
- W2327026567 citedByCount "76" @default.
- W2327026567 countsByYear W23270265672015 @default.
- W2327026567 countsByYear W23270265672016 @default.
- W2327026567 countsByYear W23270265672017 @default.
- W2327026567 countsByYear W23270265672018 @default.