Matches in SemOpenAlex for { <https://semopenalex.org/work/W2327131330> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W2327131330 abstract "Error analyses of Euler angle transformations arise in the design of precision pointing systems, guidance systems and other systems containing gimbals. The generalized problem, including nonorthogonality of nominally orthogonal coordinate axes as well as errors in the Euler angles, is treated. The usual approach by tedious matrix techniques is simplified to yield a vector solution by application of a similarity transformation to the skew- symmetric error matrices. A vector solution is obtained directly by invoking the vector property of infinitesimal rotations. Piograms, symbolic representations of Euler angle transformations, are used to formulate the problem and to develop the vector solution. EQUENCES of angular rotations are universally used in the analysis of rigid-body dynamics. Examples can be widely found in analysis of precision pointing systems and aircraft, missiles, and space vehicles. As shown by Euler, a minimum of three rotations are required to specify the relative orientation of two orthogonal coordinate systems with arbitrary attitudes. Any physical realization of coordinate transformations, as with gimbals, for example, will introduce angular errors so that each coordinate axis is perturbed from its idealized position. The most general error analysis of an Euler angle sequence must include the effects of nonorthogonal ity of the nominally orthogonal coordinate axes as well as errors in the angles of rotation. An example problem is presented to illustrate the various approaches available for error analysis of an Euler angle sequence. The usual but tedious solution by matrix techniques is given, A vector solution is obtained by applying a similarity transformation to the matrix solution. In a second approach a vector solution to the problem is obtained directly by invoking the vector property of infinitesimal rotations. Piograms, symbolic representations of rotational coordinate transformations,1'2 are used to define the problem and are shown to give the vector solution in a particularly compact way. Three different Euler angle sequences are commonly used in the literature. One of these three is used as the example problem in this paper. The method of solution presented in the paper is applicable to any of the twelve possible three-angle Euler sequences. The method is applicable to rotational sequences of any length by an obvious extension of the technique." @default.
- W2327131330 created "2016-06-24" @default.
- W2327131330 creator A5034357079 @default.
- W2327131330 date "1972-08-14" @default.
- W2327131330 modified "2023-09-25" @default.
- W2327131330 title "Error analysis of Euler angle transformations" @default.
- W2327131330 cites W2047790512 @default.
- W2327131330 doi "https://doi.org/10.2514/6.1972-851" @default.
- W2327131330 hasPublicationYear "1972" @default.
- W2327131330 type Work @default.
- W2327131330 sameAs 2327131330 @default.
- W2327131330 citedByCount "0" @default.
- W2327131330 crossrefType "proceedings-article" @default.
- W2327131330 hasAuthorship W2327131330A5034357079 @default.
- W2327131330 hasConcept C134306372 @default.
- W2327131330 hasConcept C146160929 @default.
- W2327131330 hasConcept C2524010 @default.
- W2327131330 hasConcept C28826006 @default.
- W2327131330 hasConcept C3018824978 @default.
- W2327131330 hasConcept C33923547 @default.
- W2327131330 hasConcept C41008148 @default.
- W2327131330 hasConcept C62884695 @default.
- W2327131330 hasConceptScore W2327131330C134306372 @default.
- W2327131330 hasConceptScore W2327131330C146160929 @default.
- W2327131330 hasConceptScore W2327131330C2524010 @default.
- W2327131330 hasConceptScore W2327131330C28826006 @default.
- W2327131330 hasConceptScore W2327131330C3018824978 @default.
- W2327131330 hasConceptScore W2327131330C33923547 @default.
- W2327131330 hasConceptScore W2327131330C41008148 @default.
- W2327131330 hasConceptScore W2327131330C62884695 @default.
- W2327131330 hasLocation W23271313301 @default.
- W2327131330 hasOpenAccess W2327131330 @default.
- W2327131330 hasPrimaryLocation W23271313301 @default.
- W2327131330 hasRelatedWork W1994374557 @default.
- W2327131330 hasRelatedWork W2028405123 @default.
- W2327131330 hasRelatedWork W2081668151 @default.
- W2327131330 hasRelatedWork W2132647211 @default.
- W2327131330 hasRelatedWork W2357986411 @default.
- W2327131330 hasRelatedWork W2608886215 @default.
- W2327131330 hasRelatedWork W2781934155 @default.
- W2327131330 hasRelatedWork W4213403533 @default.
- W2327131330 hasRelatedWork W783238290 @default.
- W2327131330 hasRelatedWork W4214791222 @default.
- W2327131330 isParatext "false" @default.
- W2327131330 isRetracted "false" @default.
- W2327131330 magId "2327131330" @default.
- W2327131330 workType "article" @default.