Matches in SemOpenAlex for { <https://semopenalex.org/work/W2327135057> ?p ?o ?g. }
- W2327135057 endingPage "3249" @default.
- W2327135057 startingPage "3242" @default.
- W2327135057 abstract "CONSPECTUS: A ferroelectric crystal exhibits macroscopic electric dipole or polarization arising from spontaneous ordering of its atomic-scale dipoles that breaks inversion symmetry. Changes in applied pressure or electric field generate changes in electric polarization in a ferroelectric, defining its piezoelectric and dielectric properties, respectively, which make it useful as an electromechanical sensor and actuator in a number of applications. In addition, a characteristic of a ferroelectric is the presence of domains or states with different symmetry equivalent orientations of spontaneous polarization that are switchable with large enough applied electric field, a nonlinear property that makes it useful for applications in nonvolatile memory devices. Central to these properties of a ferroelectric are the phase transitions it undergoes as a function of temperature that involve lowering of the symmetry of its high temperature centrosymmetric paraelectric phase. Ferroelectricity arises from a delicate balance between short and long-range interatomic interactions, and hence the resulting properties are quite sensitive to chemistry, strains, and electric charges associated with its interface with substrate and electrodes. First-principles density functional theoretical (DFT) calculations have been very effective in capturing this and predicting material and environment specific properties of ferroelectrics, leading to fundamental insights into origins of ferroelectricity in oxides and chalcogenides uncovering a precise picture of electronic hybridization, topology, and mechanisms. However, use of DFT in molecular dynamics for detailed prediction of ferroelectric phase transitions and associated temperature dependent properties has been limited due to large length and time scales of the processes involved. To this end, it is quite appealing to start with input from DFT calculations and construct material-specific models that are realistic yet simple for use in large-scale simulations while capturing the relevant microscopic interactions quantitatively. In this Account, we first summarize the insights obtained into chemical mechanisms of ferroelectricity using first-principles DFT calculations. We then discuss the principles of construction of first-principles model Hamiltonians for ferroelectric phase transitions in perovskite oxides, which involve coarse-graining in time domain by integrating out high frequency phonons. Molecular dynamics simulations of the resulting model are shown to give quantitative predictions of material-specific ferroelectric transition behavior in bulk as well as nanoscale ferroelectric structures. A free energy landscape obtained through coarse-graining in real-space provides deeper understanding of ferroelectric transitions, domains, and states with inhomogeneous order and points out the key role of microscopic coupling between phonons and strain. We conclude with a discussion of the multiscale modeling strategy elucidated here and its application to other materials such as shape memory alloys." @default.
- W2327135057 created "2016-06-24" @default.
- W2327135057 creator A5016399730 @default.
- W2327135057 date "2014-10-31" @default.
- W2327135057 modified "2023-10-14" @default.
- W2327135057 title "First-Principles Theory, Coarse-Grained Models, and Simulations of Ferroelectrics" @default.
- W2327135057 cites W1508589590 @default.
- W2327135057 cites W1512182713 @default.
- W2327135057 cites W1518098775 @default.
- W2327135057 cites W1553650702 @default.
- W2327135057 cites W1567056218 @default.
- W2327135057 cites W1660819248 @default.
- W2327135057 cites W1784688418 @default.
- W2327135057 cites W1894783025 @default.
- W2327135057 cites W1970148441 @default.
- W2327135057 cites W1971066556 @default.
- W2327135057 cites W1971218287 @default.
- W2327135057 cites W1972723922 @default.
- W2327135057 cites W1989965936 @default.
- W2327135057 cites W2001761237 @default.
- W2327135057 cites W2015562703 @default.
- W2327135057 cites W2017333656 @default.
- W2327135057 cites W2021426961 @default.
- W2327135057 cites W2037292996 @default.
- W2327135057 cites W2039799280 @default.
- W2327135057 cites W2039842934 @default.
- W2327135057 cites W2039869056 @default.
- W2327135057 cites W2044095971 @default.
- W2327135057 cites W2050625459 @default.
- W2327135057 cites W2050890866 @default.
- W2327135057 cites W2055259893 @default.
- W2327135057 cites W2055464599 @default.
- W2327135057 cites W2064548269 @default.
- W2327135057 cites W2070790584 @default.
- W2327135057 cites W2071110032 @default.
- W2327135057 cites W2073573363 @default.
- W2327135057 cites W2074950413 @default.
- W2327135057 cites W2085488984 @default.
- W2327135057 cites W2087585288 @default.
- W2327135057 cites W2089716071 @default.
- W2327135057 cites W2104757784 @default.
- W2327135057 cites W2106268548 @default.
- W2327135057 cites W2124643090 @default.
- W2327135057 cites W2125713092 @default.
- W2327135057 cites W2135179525 @default.
- W2327135057 cites W2164805481 @default.
- W2327135057 cites W2171752110 @default.
- W2327135057 cites W2246414389 @default.
- W2327135057 cites W2313177483 @default.
- W2327135057 cites W2319238740 @default.
- W2327135057 cites W2321151067 @default.
- W2327135057 cites W38543822 @default.
- W2327135057 cites W4229766111 @default.
- W2327135057 doi "https://doi.org/10.1021/ar500331c" @default.
- W2327135057 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25361389" @default.
- W2327135057 hasPublicationYear "2014" @default.
- W2327135057 type Work @default.
- W2327135057 sameAs 2327135057 @default.
- W2327135057 citedByCount "9" @default.
- W2327135057 countsByYear W23271350572015 @default.
- W2327135057 countsByYear W23271350572016 @default.
- W2327135057 countsByYear W23271350572017 @default.
- W2327135057 countsByYear W23271350572018 @default.
- W2327135057 countsByYear W23271350572020 @default.
- W2327135057 countsByYear W23271350572022 @default.
- W2327135057 countsByYear W23271350572023 @default.
- W2327135057 crossrefType "journal-article" @default.
- W2327135057 hasAuthorship W2327135057A5016399730 @default.
- W2327135057 hasConcept C100082104 @default.
- W2327135057 hasConcept C115260700 @default.
- W2327135057 hasConcept C121332964 @default.
- W2327135057 hasConcept C133386390 @default.
- W2327135057 hasConcept C147597530 @default.
- W2327135057 hasConcept C147789679 @default.
- W2327135057 hasConcept C149288129 @default.
- W2327135057 hasConcept C152365726 @default.
- W2327135057 hasConcept C159467904 @default.
- W2327135057 hasConcept C159985019 @default.
- W2327135057 hasConcept C173523689 @default.
- W2327135057 hasConcept C185592680 @default.
- W2327135057 hasConcept C188914724 @default.
- W2327135057 hasConcept C192562407 @default.
- W2327135057 hasConcept C205049153 @default.
- W2327135057 hasConcept C26873012 @default.
- W2327135057 hasConcept C32546565 @default.
- W2327135057 hasConcept C49040817 @default.
- W2327135057 hasConcept C60799052 @default.
- W2327135057 hasConcept C62520636 @default.
- W2327135057 hasConcept C79090758 @default.
- W2327135057 hasConcept C99942733 @default.
- W2327135057 hasConceptScore W2327135057C100082104 @default.
- W2327135057 hasConceptScore W2327135057C115260700 @default.
- W2327135057 hasConceptScore W2327135057C121332964 @default.
- W2327135057 hasConceptScore W2327135057C133386390 @default.
- W2327135057 hasConceptScore W2327135057C147597530 @default.
- W2327135057 hasConceptScore W2327135057C147789679 @default.
- W2327135057 hasConceptScore W2327135057C149288129 @default.
- W2327135057 hasConceptScore W2327135057C152365726 @default.