Matches in SemOpenAlex for { <https://semopenalex.org/work/W2327679014> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2327679014 endingPage "1068" @default.
- W2327679014 startingPage "1062" @default.
- W2327679014 abstract "Much has been revealed concerning human motor learning at the behavioral level [1Franklin D.W. Wolpert D.M. Computational mechanisms of sensorimotor control.Neuron. 2011; 72: 425-442Abstract Full Text Full Text PDF PubMed Scopus (395) Google Scholar, 2Wolpert D.M. Diedrichsen J. Flanagan J.R. Principles of sensorimotor learning.Nat. Rev. Neurosci. 2011; 12: 739-751Crossref PubMed Scopus (812) Google Scholar], but less is known about changes in the involved neural circuits and signals. By examining muscle spindle responses during a classic visuomotor adaptation task [3Krakauer J.W. Pine Z.M. Ghilardi M.F. Ghez C. Learning of visuomotor transformations for vectorial planning of reaching trajectories.J. Neurosci. 2000; 20: 8916-8924Crossref PubMed Google Scholar, 4Krakauer J.W. Motor learning and consolidation: the case of visuomotor rotation.Adv. Exp. Med. Biol. 2009; 629: 405-421Crossref PubMed Scopus (187) Google Scholar, 5Saijo N. Gomi H. Effect of visuomotor-map uncertainty on visuomotor adaptation.J. Neurophysiol. 2012; 107: 1576-1585Crossref PubMed Scopus (11) Google Scholar, 6Shabbott B.A. Sainburg R.L. Learning a visuomotor rotation: simultaneous visual and proprioceptive information is crucial for visuomotor remapping.Exp. Brain Res. 2010; 203: 75-87Crossref PubMed Scopus (76) Google Scholar] performed by fully alert humans, I found substantial modulation of sensory afferent signals as a function of adaptation state. Specifically, spindle control was independent of concurrent muscle activity but was specific to movement direction (representing muscle lengthening versus shortening) and to different stages of learning. Increased spindle afferent responses to muscle stretch occurring early during learning reflected individual error size and were negatively related to subsequent antagonist activity (i.e., 60–80 ms thereafter). Relative increases in tonic afferent output early during learning were predictive of the subjects’ adaptation rate. I also found that independent spindle control during sensory realignment (the “washout” stage) induced afferent signal “linearization” with respect to muscle length (i.e., signals were more tuned to hand position). The results demonstrate for the first time that motor learning also involves independent and state-related modulation of sensory mechanoreceptor signals. The current findings suggest that adaptive motor performance also relies on the independent control of sensors, not just of muscles. I propose that the “γ” motor system innervating spindles acts to facilitate the acquisition and extraction of task-relevant information at the early stages of sensorimotor adaptation. This designates a more active and targeted role for the human proprioceptive system during motor learning." @default.
- W2327679014 created "2016-06-24" @default.
- W2327679014 creator A5078455808 @default.
- W2327679014 date "2016-04-01" @default.
- W2327679014 modified "2023-10-14" @default.
- W2327679014 title "Enhanced Muscle Afferent Signals during Motor Learning in Humans" @default.
- W2327679014 cites W1518005581 @default.
- W2327679014 cites W1602991810 @default.
- W2327679014 cites W1924395851 @default.
- W2327679014 cites W1970890515 @default.
- W2327679014 cites W1972955804 @default.
- W2327679014 cites W1991895756 @default.
- W2327679014 cites W1995076113 @default.
- W2327679014 cites W2004555777 @default.
- W2327679014 cites W2019256362 @default.
- W2327679014 cites W2026121589 @default.
- W2327679014 cites W2036416903 @default.
- W2327679014 cites W2050165258 @default.
- W2327679014 cites W2053928556 @default.
- W2327679014 cites W2055755947 @default.
- W2327679014 cites W2078460999 @default.
- W2327679014 cites W2081817157 @default.
- W2327679014 cites W2082769632 @default.
- W2327679014 cites W2097861969 @default.
- W2327679014 cites W2099869876 @default.
- W2327679014 cites W2111473941 @default.
- W2327679014 cites W2114414717 @default.
- W2327679014 cites W2115162941 @default.
- W2327679014 cites W2120276579 @default.
- W2327679014 cites W2120741941 @default.
- W2327679014 cites W2122202913 @default.
- W2327679014 cites W2140594760 @default.
- W2327679014 cites W2320637908 @default.
- W2327679014 doi "https://doi.org/10.1016/j.cub.2016.02.030" @default.
- W2327679014 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27040776" @default.
- W2327679014 hasPublicationYear "2016" @default.
- W2327679014 type Work @default.
- W2327679014 sameAs 2327679014 @default.
- W2327679014 citedByCount "46" @default.
- W2327679014 countsByYear W23276790142017 @default.
- W2327679014 countsByYear W23276790142018 @default.
- W2327679014 countsByYear W23276790142019 @default.
- W2327679014 countsByYear W23276790142020 @default.
- W2327679014 countsByYear W23276790142021 @default.
- W2327679014 countsByYear W23276790142022 @default.
- W2327679014 countsByYear W23276790142023 @default.
- W2327679014 crossrefType "journal-article" @default.
- W2327679014 hasAuthorship W2327679014A5078455808 @default.
- W2327679014 hasBestOaLocation W23276790141 @default.
- W2327679014 hasConcept C107690735 @default.
- W2327679014 hasConcept C137813230 @default.
- W2327679014 hasConcept C15744967 @default.
- W2327679014 hasConcept C169760540 @default.
- W2327679014 hasConcept C169976356 @default.
- W2327679014 hasConcept C171790689 @default.
- W2327679014 hasConcept C2778828891 @default.
- W2327679014 hasConcept C2779263132 @default.
- W2327679014 hasConcept C2779473830 @default.
- W2327679014 hasConcept C55493867 @default.
- W2327679014 hasConcept C83867959 @default.
- W2327679014 hasConcept C86803240 @default.
- W2327679014 hasConcept C94487597 @default.
- W2327679014 hasConceptScore W2327679014C107690735 @default.
- W2327679014 hasConceptScore W2327679014C137813230 @default.
- W2327679014 hasConceptScore W2327679014C15744967 @default.
- W2327679014 hasConceptScore W2327679014C169760540 @default.
- W2327679014 hasConceptScore W2327679014C169976356 @default.
- W2327679014 hasConceptScore W2327679014C171790689 @default.
- W2327679014 hasConceptScore W2327679014C2778828891 @default.
- W2327679014 hasConceptScore W2327679014C2779263132 @default.
- W2327679014 hasConceptScore W2327679014C2779473830 @default.
- W2327679014 hasConceptScore W2327679014C55493867 @default.
- W2327679014 hasConceptScore W2327679014C83867959 @default.
- W2327679014 hasConceptScore W2327679014C86803240 @default.
- W2327679014 hasConceptScore W2327679014C94487597 @default.
- W2327679014 hasIssue "8" @default.
- W2327679014 hasLocation W23276790141 @default.
- W2327679014 hasLocation W23276790142 @default.
- W2327679014 hasOpenAccess W2327679014 @default.
- W2327679014 hasPrimaryLocation W23276790141 @default.
- W2327679014 hasRelatedWork W1133401596 @default.
- W2327679014 hasRelatedWork W1991951706 @default.
- W2327679014 hasRelatedWork W2007239433 @default.
- W2327679014 hasRelatedWork W2072392811 @default.
- W2327679014 hasRelatedWork W2089080907 @default.
- W2327679014 hasRelatedWork W2412151074 @default.
- W2327679014 hasRelatedWork W2472162315 @default.
- W2327679014 hasRelatedWork W2492144985 @default.
- W2327679014 hasRelatedWork W3047256684 @default.
- W2327679014 hasRelatedWork W3154951306 @default.
- W2327679014 hasVolume "26" @default.
- W2327679014 isParatext "false" @default.
- W2327679014 isRetracted "false" @default.
- W2327679014 magId "2327679014" @default.
- W2327679014 workType "article" @default.