Matches in SemOpenAlex for { <https://semopenalex.org/work/W2327831602> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2327831602 endingPage "1583" @default.
- W2327831602 startingPage "1582" @default.
- W2327831602 abstract "reflectance spectrophotometry TO THE EDITOR Reflectance spectrophotometry (RS), which measures the intensity of light reflected from an object throughout a range of wavelengths, has been used in dermatology to quantify skin color (Stamatas et al., 2004Stamatas G.N. Zmudzka B.Z. Kollias N. Beer J.Z. Non-invasive measurements of skin pigmentation in situ.Pigment Cell Res. 2004; 17: 618-626Crossref PubMed Scopus (169) Google Scholar), chromophore content (Zonios et al., 2001Zonios G. Bykowski J. Kollias N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy.J Invest Dermatol. 2001; 117: 1452-1457Crossref PubMed Scopus (329) Google Scholar; Randeberg et al., 2005Randeberg L.L. Roll E.B. Nilsen L.T. Christensen T. Svaasand L.O. In vivo spectroscopy of jaundiced newborn skin reveals more than a bilirubin index.Acta Paediatrica. 2005; 94: 65-71Crossref PubMed Scopus (38) Google Scholar), and to discriminate between benign and malignant skin lesions (Wallace et al., 2000Wallace V.P. Crawford D.C. Mortimer P.S. Ott R.J. Bamber J.C. Spectrophotometric assessment of pigmented skin lesions: methods and feature selection for evaluation of diagnostic performance.Phys Med Biol. 2000; 45: 735-751Crossref PubMed Scopus (117) Google Scholar) among other things. As diagnostic accuracy for some skin lesions, such as melanoma, increases with the number of years of specialist clinical experience (Morton and Mackie, 1998Morton C.A. Mackie R.M. Clinical accuracy of the diagnosis of cutaneous malignant melanoma.Br J Dermatol. 1998; 138: 283-287Crossref PubMed Scopus (168) Google Scholar), RS can provide an accurate and objective diagnostic aid that complements experience and visual assessment of skin conditions. However, care must be taken in the analysis and interpretation of raw reflection spectra to assure accuracy and reproducibility of the measurements. Recently, Pershing et al., 2008Pershing L.K. Tirumala V.P. Nelson J.L. Corlett J.L. Lin A.G. Meyer L.J. et al.Reflectance spectrophotometer: the dermatologists’ sphygmomanometer for skin phototyping?.J Invest Dermatol. 2008; 128: 1633-1640Crossref PubMed Scopus (47) Google Scholar used RS to determine skin phototype by using, as figure of merit, the area under the intensity curve over the 450- to 615-nm wavelength range on raw reflection spectra and fitting it to a quadratic equation. Pershing et al., 2008Pershing L.K. Tirumala V.P. Nelson J.L. Corlett J.L. Lin A.G. Meyer L.J. et al.Reflectance spectrophotometer: the dermatologists’ sphygmomanometer for skin phototyping?.J Invest Dermatol. 2008; 128: 1633-1640Crossref PubMed Scopus (47) Google Scholar performed a calibration procedure, consisting of the evaluation of several diffuse color standards, and requiring that the reflected intensities for each standard be ±10% of previously determined mean intensities before the evaluation of human subjects. This procedure assumes an extremely stable light source and a very low detector dark current, which is generally not the case (Wallace et al., 2000Wallace V.P. Crawford D.C. Mortimer P.S. Ott R.J. Bamber J.C. Spectrophotometric assessment of pigmented skin lesions: methods and feature selection for evaluation of diagnostic performance.Phys Med Biol. 2000; 45: 735-751Crossref PubMed Scopus (117) Google Scholar). To assure accuracy and reproducibility of the measurements, the raw reflectance spectrum should be corrected for the detector dark current (D(λ)) and for the light source spectrum (Sref(λ)) according to the following equation (Wallace et al., 2000Wallace V.P. Crawford D.C. Mortimer P.S. Ott R.J. Bamber J.C. Spectrophotometric assessment of pigmented skin lesions: methods and feature selection for evaluation of diagnostic performance.Phys Med Biol. 2000; 45: 735-751Crossref PubMed Scopus (117) Google Scholar): R(λ)=Smeas(λ)-D(λ)Sref(λ)-D(λ)(1) where Smeas(λ) is the raw reflection data, D(λ) is the detector dark current that is obtained by closing the internal shutter of the spectrophotometer, and Sref(λ) is the spectrum obtained using a white reflectance standard defined as an object with a reflectance close to 100% at all wavelengths of interest (Stamatas et al., 2004Stamatas G.N. Zmudzka B.Z. Kollias N. Beer J.Z. Non-invasive measurements of skin pigmentation in situ.Pigment Cell Res. 2004; 17: 618-626Crossref PubMed Scopus (169) Google Scholar). These dark current and reference measurements should be performed before each skin reflectance measurement (Wallace et al., 2000Wallace V.P. Crawford D.C. Mortimer P.S. Ott R.J. Bamber J.C. Spectrophotometric assessment of pigmented skin lesions: methods and feature selection for evaluation of diagnostic performance.Phys Med Biol. 2000; 45: 735-751Crossref PubMed Scopus (117) Google Scholar). To use the method of Pershing et al., 2008Pershing L.K. Tirumala V.P. Nelson J.L. Corlett J.L. Lin A.G. Meyer L.J. et al.Reflectance spectrophotometer: the dermatologists’ sphygmomanometer for skin phototyping?.J Invest Dermatol. 2008; 128: 1633-1640Crossref PubMed Scopus (47) Google Scholar to assess skin phototype, the raw reflectance spectra of a white male with skin phototype II, measured at the upper volar arm site and at the dorsal forearm with an RS system consisting of a USB4000 VIS-NIR spectrometer, an LS-1 Tungsten Halogen light source, and an R-series Fiber Optic Reflection Probe (Ocean Optics Inc., Dunedin, FL), was obtained. Figure 1 shows the raw reflectance spectra measured that are qualitatively similar to the spectra showed by Pershing et al., 2008Pershing L.K. Tirumala V.P. Nelson J.L. Corlett J.L. Lin A.G. Meyer L.J. et al.Reflectance spectrophotometer: the dermatologists’ sphygmomanometer for skin phototyping?.J Invest Dermatol. 2008; 128: 1633-1640Crossref PubMed Scopus (47) Google Scholar in Figure 5 of their article. One of the main differences in the spectra presented by Pershing et al., 2008Pershing L.K. Tirumala V.P. Nelson J.L. Corlett J.L. Lin A.G. Meyer L.J. et al.Reflectance spectrophotometer: the dermatologists’ sphygmomanometer for skin phototyping?.J Invest Dermatol. 2008; 128: 1633-1640Crossref PubMed Scopus (47) Google Scholar in their article and the one shown in Figure 1 is the measured RS intensity values obtained, which in the former is about 1,800 counts and in the latter about 5,200 counts. This difference in intensity could be due to different factors such as the spectrometer and light source employed or the integration time used to make the measurements; therefore, the area under the intensity curve for the spectra shown in Figure 1 will not give the correct skin phototype if the quadratic fit presented in the paper by Pershing et al., 2008Pershing L.K. Tirumala V.P. Nelson J.L. Corlett J.L. Lin A.G. Meyer L.J. et al.Reflectance spectrophotometer: the dermatologists’ sphygmomanometer for skin phototyping?.J Invest Dermatol. 2008; 128: 1633-1640Crossref PubMed Scopus (47) Google Scholar is used. To use the method of Pershing et al., 2008Pershing L.K. Tirumala V.P. Nelson J.L. Corlett J.L. Lin A.G. Meyer L.J. et al.Reflectance spectrophotometer: the dermatologists’ sphygmomanometer for skin phototyping?.J Invest Dermatol. 2008; 128: 1633-1640Crossref PubMed Scopus (47) Google Scholar to assess skin phototype, a normalization technique, such as the one presented in Eq. (1), should be used. Figure 2 shows the same reflectance measurements of Figure 1 after correcting for the detector dark current and for the light source spectrum. The spectra shown in Figure 2 closely resemble previously published data (Takiwaki et al., 2004Takiwaki H. Miyaoka Y. Arase S. Analysis of the absorbance spectra of skin lesions as a helpful tool for detection of major pathophysiological changes.Skin Res Technol. 2004; 10: 130-135Crossref PubMed Scopus (14) Google Scholar; Matts et al., 2007Matts P.J. Dykes P.J. Marks R. The distribution of melanin in skin determined in vivo.Br J Dermatol. 2007; 156: 620-628Crossref PubMed Scopus (72) Google Scholar) taken with different instrumentation setups. In summary, RS can be used as a diagnostic aid in dermatology if proper correction and normalization techniques are employed. The author states no conflict of interest. I acknowledge fruitful discussions with Benjamin Moncada from the Dermatology Department, Hospital Central, San Luis Potosi, SLP, Mexico, and technical assistance from Isaac Muñoz and Edgar Guevara in the acquisition and processing of reflectance spectra." @default.
- W2327831602 created "2016-06-24" @default.
- W2327831602 creator A5057423896 @default.
- W2327831602 date "2009-06-01" @default.
- W2327831602 modified "2023-10-16" @default.
- W2327831602 title "Comment on: “Reflectance Spectrophotometer: the Dermatologist's Sphygmomanometer for Skin Aging?”" @default.
- W2327831602 cites W1982704641 @default.
- W2327831602 cites W1993944298 @default.
- W2327831602 cites W2003696138 @default.
- W2327831602 cites W2023781613 @default.
- W2327831602 cites W2076187744 @default.
- W2327831602 cites W2089724274 @default.
- W2327831602 cites W2142901515 @default.
- W2327831602 cites W4241653027 @default.
- W2327831602 doi "https://doi.org/10.1038/jid.2008.436" @default.
- W2327831602 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19434089" @default.
- W2327831602 hasPublicationYear "2009" @default.
- W2327831602 type Work @default.
- W2327831602 sameAs 2327831602 @default.
- W2327831602 citedByCount "6" @default.
- W2327831602 countsByYear W23278316022013 @default.
- W2327831602 countsByYear W23278316022022 @default.
- W2327831602 countsByYear W23278316022023 @default.
- W2327831602 crossrefType "journal-article" @default.
- W2327831602 hasAuthorship W2327831602A5057423896 @default.
- W2327831602 hasBestOaLocation W23278316021 @default.
- W2327831602 hasConcept C108597893 @default.
- W2327831602 hasConcept C120665830 @default.
- W2327831602 hasConcept C121332964 @default.
- W2327831602 hasConcept C126322002 @default.
- W2327831602 hasConcept C16005928 @default.
- W2327831602 hasConcept C2910533495 @default.
- W2327831602 hasConcept C71924100 @default.
- W2327831602 hasConcept C84393581 @default.
- W2327831602 hasConceptScore W2327831602C108597893 @default.
- W2327831602 hasConceptScore W2327831602C120665830 @default.
- W2327831602 hasConceptScore W2327831602C121332964 @default.
- W2327831602 hasConceptScore W2327831602C126322002 @default.
- W2327831602 hasConceptScore W2327831602C16005928 @default.
- W2327831602 hasConceptScore W2327831602C2910533495 @default.
- W2327831602 hasConceptScore W2327831602C71924100 @default.
- W2327831602 hasConceptScore W2327831602C84393581 @default.
- W2327831602 hasIssue "6" @default.
- W2327831602 hasLocation W23278316021 @default.
- W2327831602 hasLocation W23278316022 @default.
- W2327831602 hasOpenAccess W2327831602 @default.
- W2327831602 hasPrimaryLocation W23278316021 @default.
- W2327831602 hasRelatedWork W1506200166 @default.
- W2327831602 hasRelatedWork W1995515455 @default.
- W2327831602 hasRelatedWork W2048182022 @default.
- W2327831602 hasRelatedWork W2080531066 @default.
- W2327831602 hasRelatedWork W2604872355 @default.
- W2327831602 hasRelatedWork W2748952813 @default.
- W2327831602 hasRelatedWork W2899084033 @default.
- W2327831602 hasRelatedWork W3031052312 @default.
- W2327831602 hasRelatedWork W3032375762 @default.
- W2327831602 hasRelatedWork W3108674512 @default.
- W2327831602 hasVolume "129" @default.
- W2327831602 isParatext "false" @default.
- W2327831602 isRetracted "false" @default.
- W2327831602 magId "2327831602" @default.
- W2327831602 workType "article" @default.